24/10/2008

Refrigeração Aula 08

BTU/h significa Unidade Térmica Britânica por hora. É a unidade mais utilizada no Brasil para se definir a capacidade térmica de um equipamento. 12.000 BTU/h = 1 TR. Para que você tenha uma idéia de qual é o aparelho melhor adaptável ao seu imóvel, estima-se que, um ambiente com área de 6 m², como uma sala de um apartamento, é aconselhável uma oferta de 7.500 BTU's (British Thermal Unity - unidade britânica de medida térmica) de ar frio para deixar a temperatura do espaço confortável para duas pessoas. Essa carga térmica foi calculada para uma instalação em um andar intermediário do imóvel e, para cada pessoa a mais no ambiente, deve ser acrescentado 600 BTU/h.

23/10/2008

Termodinâmica Aula 10

Uma usina termoelétrica pode ser definida como um conjunto de equipamentos cuja finalidade é a geração de energia elétrica, através de um processo que consiste em três etapas. Nas usinas térmicas convencionais, a primeira etapa consiste na queima de um combustível fóssil, como carvão, óleo ou gás, transformando a água em vapor com o calor gerado na caldeira. A segunda consiste na utilização deste vapor, em alta pressão, para girar uma turbina, que por sua vez, aciona um gerador elétrico. Na terceira etapa, o vapor é condensado, transferindo o resíduo de sua energia térmica para um circuito independente de refrigeração(torres de resfriamento), retornando a água à caldeira, completando o ciclo. A potência mecânica obtida pela passagem do vapor através da turbina - fazendo com que esta gire - e no gerador - que também gira acoplado mecanicamente à turbina - é que transforma a potência mecânica em potência elétrica. A energia assim gerada é levada através de cabos ou barras condutoras, dos terminais do gerador até o transformador elevador, onde tem sua tensão elevada para adequada condução, através de linhas de transmissão, até os centros de consumo. Daí, através de transformadores abaixadores, a energia tem sua tensão levada a níveis adequados para utilização pelos consumidores.

22/10/2008

Gás Liquefeito de Petróleo

O gás de cozinha é combustível formado pela mistura de hidrocarbonetos com três ou quatro átomos de carbono ( propano 50% e butano 50% ) extraídos do petróleo, podendo apresentar-se em mistura entre si e com pequenas frações de outros hidrocarbonetos. Ele tem a característica de ficar sempre em estado liquido quando submetido a uma certa pressão, sendo por isto chamado de gás liqüefeito de petróleo (GLP). De fácil combustão, o GLP é inodoro mas, por motivo de segurança, uma substância do grupo MERCAPTAN é adicionada ainda nas refinarias. Ela produz o cheiro característico percebido quando há algum vazamento de gás. O GLP não é corrosivo, poluente e nem tóxico, mas se inalado em grande quantidade produz efeito anestésico. O GLP é um dos muitos derivados do petróleo. Por ser o mais leve deles, é o último produto comercial resultante da cadeia de extração. Antes dele são produzidos os óleos combustíveis, a gasolina, o querosene, o diesel, a nafta e, finalmente, o gás liquefeito de petróleo. Depois de produzido, o GLP é mandado para as companhias de gás por caminhões e gasodutos. Nelas, o GLP é engarrafado nas diversas embalagens, sendo a de 13 quilos a mais famosa, e segue para o consumo final. Para a indústria, o GLP é vendido a granel.Comparado a outros combustíveis, o GLP apresenta vantagens técnicas e econômicas, associando a superioridade dos gases na hora da queima com a facilidade de transporte e armazenamento dos líquidos. Como gás, sua mistura com o ar é mais simples e completa, o que permite uma combustão limpa, não poluente e de maior rendimento. Liqüefeito, sob suave pressão na temperatura ambiente, pode ser armazenado e transportado com facilidade, inclusive em grandes quantidades.Os botijões são fabricados com chapas de aço, capazes de suportar altas pressões e segundo normas técnicas de segurança da Associação Brasileira de Normas Técnica (ABNT). O gás dentro dos botijões encontra-se no estado líquido e no de vapor. Do volume do botijão, 85% é de gás em fase líquida e 15% em fase de vapor, o que constitui um espaço de segurança que evita uma pressão elevada dentro do botijão.

21/10/2008

Refrigeração Aula 07

O conforto térmico no interior das edificações depende de aspectos como radiação solar, posição dos ventos e características climáticas do local, além do posicionamento do edifício, se a incidência de radiação se dá apenas pela manhã ou o dia todo, o tipo de fachada, espessura de paredes, dimensão das aberturas e materiais empregados. Esses dados podem ser equacionados numa estimativa que definirá a capacidade do equipamento de refrigeração recomendado para manter o conforto térmico dos ocupantes do ambiente. É importante destacar que qualquer relação entre a capacidade do sistema de refrigeração e a área a ser atendida serve exclusivamente como referência inicial, uma vez que a especificação correta depende da configuração física do espaço e de sua carga térmica, dado que varia em função da incidência solar e do calor gerado por pessoas e equipamentos. Para que a temperatura seja agradável e exista conforto térmico nos ambientes, recorremos aos sistemas de condicionamento de ar. Os sistemas de condicionamento de ar utilizados nas residências são conhecidos no mercado como aparelhos de “janela”, onde esse sistema apresenta um conjunto compacto, com as serpentinas de evaporação e condensação, montadas próximo ao motocompressor e aos ventiladores, responsáveis pelo deslocamento do ar condicionado para o interior do ambiente e a exaustão do calor da serpentina de condensação, realizando a dissipação, diminuindo a temperatura do fluido refrigerante. O princípio de funcionamento é o mesmo da geladeira. Os condicionadores de ar mais utilizados atualmente são os Split, sistemas de refrigeração destinados à climatização de ambientes, que possuem dois estágios diferentes: um é instalado no interior do ambiente (evaporador) e a outra fica do lado de fora (condensador e motocompressor). Além de manter o ar do ambiente agradável e com a temperatura controlada, os Split ainda reduzem o ruído de operação, já que o condensador e o motocompressor estão localizados na parte externa do ambiente. Possuem sistema de filtragem do ar através de filtros removíveis para limpeza periódica. O ciclo de refrigeração é por compressão de fluido, geralmente o R22, apresentando excelente eficiência, desde que estejam dimensionados respeitando as características do ambiente. Em aplicações comerciais e industriais de grande porte, recorremos aos projetos de refrigeração e climatização, como as centrais de ar condicionado, onde é gerado o ar climatizado e este é deslocado através de dutos para o interior do ambiente. Este sistema de refrigeração recorre ao fornecimento de energia fluídica, gerada por compressores, alimentados por motores elétricos e acionados por correias e polias. As centrais de ar condicionado e as câmaras de refrigeração, por serem sistemas extremamente controlados, com válvulas de expansão monitoradas por CLP, apresentam um rendimento superior e uma economia de energia elétrica considerável. Alguns desses sistemas são também monitorados por pressostatos, que controlam as pressões, mínima e máxima evitando vazamentos ou perdas de fluido refrigerante.

20/10/2008

Refrigeração Aula 06

Compressores, motocompressores e ventiladores são máquinas operatrizes destinadas a promover o escoamento e o fluxo de um fluido compressível. Funcionam com deslocamento contínuo de gases e vapores, elevando sua energia utilizável, pelo aumento da sua pressão. Os Compressores são utilizados para proporcionar a elevação da pressão de um gás, conseqüentemente, aumentando também seu volume e sua temperatura. Essa compressão pode ocorrer adiabaticamente, quando o fluido se destina a um processo de combustão ou refrigeração, a fim de que resulte na obtenção de uma maior parcela de energia disponível no fluido, após o processo de compressão. Na Refrigeração, o fluido é direcionado para o Condensador, onde tem seu estado alterado em função do calor latente, passando de gasoso superaquecido para liquefeito. No entanto, alguns processos exigem diferentes aplicações, para os gases comprimidos, quando estes são armazenados em vasos de pressão ou reservatórios. Durante esse processo, o fluido gasoso assume uma temperatura mais baixa que a temperatura ambiente, produzindo com isto, um líquido condensado, que deve ser constantemente purgado, para não prejudicar as instalações pneumáticas. Figura 1 – Motocompressor Hermético. Podemos também considerar, os motocompressores herméticos e os compressores como bombas de fluidos, principalmente quando utilizamos estas máquinas para fins de refrigeração, comprimindo fluido refrigerante em estado gasoso. Estas máquinas funcionam como motores de combustão interna, no sentido inverso, recebendo energia eletromecânica e transformando-a em energia térmica, com a compressão do fluido refrigerante que absorve o calor do ambiente refrigerado, numa reação endotérmica que o fluido sofre, ao ser retirado do Evaporador de maneira brusca, pela ação do motocompressor. Os Ventiladores são máquinas destinadas ao escoamento e deslocamento de fluidos gasosos. São elementos indispensáveis ao funcionamento de sistemas de refrigeração e climatização. Com exceção das nossas geladeiras, todos os outros sistemas refrigerados necessitam de auxílio de ventiladores, para deslocar o calor das aletas das serpentinas de condensação para o meio externo. Nos condicionadores de ar e câmaras refrigeradoras, estes elementos desempenham papel muito importante. São responsáveis pela equalização do sistema, auxiliando na transformação do fluido do estado gasoso para o estado líquido e pela circulação do ar refrigerado, forçando a convecção que promove o conforto térmico do ambiente. Figura 2 – Ventiladores, Sopradores e Exaustores. Estas máquinas podem ter diferentes aplicações e apresentarem diferentes identificações por conta de suas operações. Podem ser identificados como ventiladores, sopradores ou exaustores. São máquinas utilizadas para dissipar o calor de ambientes e de máquinas e equipamentos, equalizando o ambiente com o equilíbrio da temperatura.

16/10/2008

Refrigeração Aula 05

Nos sistemas de pequena capacidade como geladeiras, freezers e aparelhos condicionadores de ar, o dispositivo de expansão do fluido refrigerante utilizado é o tubo capilar. É um tubo de pequeno diâmetro, com determinado comprimento, que fica parcialmente enrolado no bulbo (filtro secador), este tem a função de fazer a ligação entre a saída do condensador e a entrada do evaporador. Essa diferença de diâmetro permite a expansão do fluido em estado líquido, quando este é forçado pelo motocompressor a sair do evaporador, causando uma reação endotérmica, absorvendo o calor do ambiente a ser refrigerado. Os tubos capilares são fabricados de cobre, latão ou ligas mais leve com uma porcentagem de cobre. Quando o motocompressor é desligado, ao atingir a eficiência térmica dos sistemas de refrigeração e climatização, ocorre um equilíbrio entre a pressão alta e baixa do sistema. Por este fato, nos sistemas de refrigeração de pequeno porte, como em nossa geladeira, não existe um reservatório propriamente dito, todo o ciclo de refrigeração é alimentado por uma quantidade mínima e controlada de fluido refrigerante. Essa quantidade é apenas para satisfazer a capacidade de evaporação e manter a vedação do sistema, com uma quantidade de refrigerante líquido entre a saída do condensador e o bulbo. Os tubos capilares apresentam como vantagens o baixo custo, por ser de cobre, a simplicidade por não apresentarem partes móveis, a redução da quantidade e custo do fluido refrigerante, pois descarta a utilização de um reservatório de fluido, o que em caso de um vazamento (entropia), causaria um prejuízo ainda maior. Porém, esse tubo, pode apresentar risco de quebra por ser frágil, além da impossibilidade da regulagem do fluxo do fluido refrigerante.As válvulas mecânicas permitem, através do deslocamento de um diafragma, o fluxo do fluido refrigerante para o sistema de refrigeração ou climatização. São também conhecidas como válvulas de equalização interna. Seu acionamento se dá, através da dilatação térmica do mercúrio contido em um bulbo, que fica em contato com o evaporador. Na outra extremidade, temos o mercúrio em contato com uma lâmina, que controla o fluxo do fluido, abrindo ou fechando a válvula, de acordo com a eficiência térmica encontrada no evaporador. Se a temperatura no interior do evaporador aumenta, o mercúrio se dilata pressionado o diafragma, forçando a passagem do fluido até que a temperatura vá se corrigindo, até atingir o ponto de eficiência (set point), quando a lâmina volta a se comprimir termicamente, eliminando a pressão sobre o diafragma, fechando a válvula por completo. Concomitantemente, outro bulbo contendo mercúrio, estará controlando o funcionamento do motocompressor, ligando e desligando o contato elétrico do mesmo, ao mesmo tempo em que a válvula estará abrindo ou fechando. Este sincronismo, garante ao sistema, um funcionamento equalizado do ciclo, através do controle térmico da temperatura, contribuindo para o controle do consumo de energia elétrica que alimenta o sistema de refrigeração. Figura 1 – Válvula de expansão mecânica com acionamento por diafragma. O sinal do controle das válvulas eletrônicas pode ser gerado a partir de um termistor, instalado na saída do evaporador, este, ao detectar o aumento da temperatura no evaporador, reduz sua resistência elétrica. Esta variação de resistência, quando analisada por um circuito eletrônico, envia um sinal digital para o posicionamento da agulha da válvula. Este sistema possibilita um controle mais preciso e eficiente do fluxo do fluido refrigerante, resultando na melhoria da eficiência térmica, conseqüentemente, consumindo menos energia elétrica. Diante disso, também teremos um controle mais preciso da temperatura do ambiente refrigerado ou climatizado. Este sinal alimentará uma fonte, que será o módulo controlador do fluxo do fluido refrigerante. Então, o módulo poderá controlar válvulas solenóides e motores de passo, para regular a abertura ou o fechamento das válvulas de expansão termostática. Figura 2 – Módulos Controladores de Expansão. (PLC) Podemos utilizar o controle do fluxo do fluido através de válvulas de expansão acionadas por solenóides, com funcionamento semelhante ao das válvulas de controle direcional, utilizadas nos circuitos hidráulicos, controlando a vazão do fluido refrigerante. Porém, estas válvulas apresentam uma desvantagem, por serem operadas de forma on/off, causam golpes no fluido quando são fechadas repentinamente, causando vibração excessiva nas tubulações do circuito de refrigeração. Figura 3 – Válvulas de Expansão controladas por solenóide. Por serem eletronicamente controlados, podemos abrir ou fechar as válvulas de expansão, através de motores de passo, utilizando acoplamentos e cremalheiras, transformando o movimento de rotação em movimento de translação. Permitindo, assim, o fechamento ou a abertura da válvula de expansão termostática. Esse funcionamento dos motores de passo permite que o controle do fluxo do fluido refrigerante seja gradativo, de acordo com a condição de eficiência encontrada no sistema de refrigeração. Figura 4 – Motores de Passo.

15/10/2008

Termodinâmica Aula 9

Soldagem é o processo de união entre duas superfícies, com ou sem a aplicação de material de adição, de modo a formar uma junção que possua as propriedades mecânicas desejáveis ao fim que se destina a operação. Para a efetivação deste processo, um dos meios de aquecimento das superfícies a serem soldadas é através do calor proveniente da combustão de uma mistura de gases, sendo um deles o oxigênio, chamado de agente comburente e outro que pode ser : acetileno, G L P, gás natural, hidrogênio, etc, chamado de agente combustível. O processo de soldagem utilizando mistura de gases, é a oxi-acetilênica, onde são misturados oxigênio (comburente) e acetileno (combustível) na proporção necessária para atingir a temperatura necessária à realização da soldagem por brasagem, autógena ou solda branca. Soldagem por fusão - autógena : É o processo em que as superfícies a serem soldadas são aquecidas pela chama até a fusão das bordas contínuas, formando uma poça de fusão, que estabelece a interação entre as duas peças. Conforme seja a espessura ou as condições de soldagem do material base, há a necessidade de adição ao processo de mais material na forma de varetas ( material de adição). Soldagem por adsorção - brasagem : Nesse processo, há sempre a adição de metal não ferroso, que se funde na região de soldagem, que estará aquecia a uma temperatura conveniente. Assim, a união é feita, aquecendo-se o material, sem fundi-lo, até temperaturas correspondentes à fluidez do material de adição. Corte - O oxi-corte é, na realidade, um processo de combustão. Quando uma chapa de aço é cortada, o ferro presente na sua composição, aquecido por uma chama à sua temperatura de ignição, reage com o oxigênio produzindo óxidos de ferro, que serão removidos da área de reação. Solda Branca: É um dos mais antigos processos de soldagem, tem como material de adição ligas de baixo ponto de fusão, tais como chumbo-estanho cádmio, etc. As operações de soldagem e corte pelo processo oxiacetilênico, são realizadas através da queima de oxigênio e acetileno misturados nas proporções corretas em um maçarico. A chama resultante dessa queima pode chegar a temperaturas em torno 3.200º C. Este processo de soldagem acontece quando as duas partes do material a ser soldado são aquecidas até o seu ponto de fusão e depois unidas.Essa fusão pode ser feita sem adição ou com a adição de um material (eletrodo) similar ao que está sendo trabalhado.Veja vídeos explicativos no final da página na Seção Oxicorte no Blog.

14/10/2008

Refrigeração Aula 04

SISTEMAS DE REFRIGERAÇÃO: O Ciclo de compressão do fluido refrigerante é atualmente utilizado em sistemas de refrigeração de pequeno e médio porte, como geladeiras, freezers, balcões frigoríficos e condicionadores de ar. A base destes sistemas está na compressão do fluido por um motocompressor, onde o ciclo se coincide. O ciclo começa quando o sistema passa de termostático (ciclo parado), para termodinâmico, quando se passa a aproveitar a energia interna do sistema através da entalpia (aproveitamento de energia de uma substância), onde o fluido refrigerante, através de suas características termodinâmicas, começa a se deslocar do tubo capilar, quando está em estado liquefeito, para o Evaporador, onde uma diferença de diâmetro existente entre o capilar e o evaporador proporciona evaporação ao fluido refrigerante, que se evapora a uma temperatura baixa (-30º). Durante essa etapa do ciclo, um bulbo contendo mercúrio já se encarregou de acionar o motocompressor, através de um circuito termoelétrico. Estando acionado, o motocompressor começa a agir como uma bomba, retirando todo o fluido em estado gasoso, que numa reação endotérmica absorve todo o calor do Evaporador e de qualquer corpo ou substância que nele se encontre, deixando o ambiente refrigerado ciclicamente. Nesse ponto o fluido encontra-se com sua pressão e temperatura baixa e seu volume se reduzindo (transformação de um gás num ciclo reversível). Até quando atingem o interior da câmara de compressão do motocompressor, onde ocorre uma transformação adiabática (tão rápido que o fluido não troca calor com o meio), apenas absorve parte do calor gerado pelo trabalho eletromecânico, responsável pelo funcionamento do pistão de compressão. Após ser comprimido, o fluido ainda em estado gasoso, é forçado a sair da câmara de combustão, por uma tubulação de menor diâmetro, causando com isso, o aumento da pressão e da temperatura do fluido, conseqüentemente seu volume também sofrerá variação, aumentando consideravelmente. Quando o fluido gasoso superaquecido (reação exotérmica) chega ao Condensador, todo o calor retirado do interior do Evaporador é dissipado, ao trocar calor com o meio externo. Nas geladeiras essa troca e dissipação ocorrem de maneira natural, através da ventilação das aletas que ficam na parte de trás. Nos condicionadores de ar essa dissipação se dá de maneira forçada, através de um ventilador que expulsa o calor do condensador. Essa ação do calor latente transforma o fluido refrigerante em estado gasoso para estado liquefeito, através da formação de fluido condensado resultante da diferença de temperatura do fluido e o meio externo.

13/10/2008

Termodinâmica Aula 8

Gases Industriais: Oxigênio, nitrogênio e argônio são obtidos do ar pelo processo de separação. Trata-se de um método criogênico desenvolvido por Carl Von Linde(foto) há mais de cem anos. O ar é comprimido e dele são removidos vapor, poeira e dióxido de carbono. Em seguida, o ar é refrigerado até atingir temperaturas extremamente baixas, comprimido para seu estado líquido,quando este se condensa,quando suas moléculas se comprimem até atingir o estado liquefeito, posteriormente sofre uma destilação obtendo assim oxigênio, nitrogênio, argônio e outros gases nobres. Acetileno C2H2: O acetileno é um gás incolor, inflamável e inodoro, quando no estado puro. O acetileno industrial contém rastros de impurezas, sulfeto de hidrogênio e amoníaco e tem um odor semelhante ao alho. O gás é ligeiramente mais leve que o ar e é solúvel em água e em algumas substâncias orgânicas. O acetileno combinado com ar ou oxigênio produz uma chama quente, luminosa e fumegante. O acetileno pode ser produzido por meio da reação de carbureto de cálcio com água, ou por pirólise de vários hidrocarbonetos. Oxigênio O2: O oxigênio é um gás incolor, inodoro e insípido. É mais pesado que o ar e é levemente solúvel em água e álcool. O oxigênio é um líquido de cor azul pálido, ligeiramente mais pesado que a água, quando submetido à pressão atmosférica ou temperaturas inferiores a -183ºC. Sozinho o oxigênio não é inflamável, mas ajuda na combustão. É altamente oxidante, reagindo fortemente quando em contato com materiais combustíveis, podendo provocar incêndio ou explosão. O oxigênio é o agente responsável pelo desgaste de peças metálicas por oxidação. Nitrogênio N2: O nitrogênio é um gás incolor, inodoro e insípido. Não é inflamável nem combustível. O ar atmosférico contém cerca de 80% de nitrogênio (volume). Este gás é ligeiramente mais leve que o ar e ligeiramente solúvel na água. É inerte, exceto sob altas temperaturas. Argônio Ar: O argônio (do grego: inativo) é um gás monoatômico atóxico, incolor, inodoro e insípido. Em conjunto com o hélio, néon, criptônio, xenônio e radônio fazem parte de um grupo especial de gases, conhecidos como gases raros, inertes ou nobres. Isto significa que estes gases têm uma tendência extremamente baixa para reação com outros compostos ou elementos. O argônio é aproximadamente 1.4 vezes mais pesado que o ar e é levemente solúvel em água. Elemento utilizado no processo especial de soldagem por argônio. Hidrogênio H2: O hidrogênio é um gás incolor, inodoro, inflamável e atóxico sob temperatura e pressão atmosférica. O hidrogênio combinado com ar produz uma chama quase invisível, de cor azul pálido. O hidrogênio é o gás mais leve encontrado na natureza. O hidrogênio é produzido industrialmente, por eletrólise da água ou reação de vapor de hidrocarbonetos.

12/10/2008

Objetivo Alcançado!

Esta semana que passou tive uma enorme satisfação e um sentimento de dever cumprido! As quatro turmas de Mecânica Industrial completaram um ciclo que se iniciou com a turma de Automotiva. Concluíram o curso depois de quase dois anos enfrentando diariamente uma variedade de dificuldades e expectativas. Pude acompanhar estas turmas muito de perto ministrando alguns componentes curriculares. Estes profissionais, lançados agora no mercado de trabalho, terão que se esforçar para solidificar suas carreiras e consequentemente conquistar espaços e realizar seus sonhos. Alguns conseguiram estágio antes mesmo de concluir o curso, outros terão mais essa etapa para cumprir. Creio que com o crescimento e a rotatividade do mercado, não terão dificuldade em conseguir superar isso. O passo mais importante é conseguir ser efetivado como profissional após o período do estágio curricular. Neste instante o candidato a profissional tem de mostrar uma vontade de crescer dentro da sua área de atuação, pois está sendo minuciosamente observado. Agora estes novos Técnicos em Mecânica Industrial e Automotiva têm uma responsabilidade muito grande, a de revelar as expectativas de todos os que os cercam, inclusive as suas, de que realmente valeu a pena frequentar este curso. Tenho uma última recomendação: estudem sempre, na sua própria área e também um curso superior, para que possam em breve, ter sua verdadeira estabilidade na carreira. Foi muito bom ver a emoção destes meninos e meninas nessa hora tão aguardada. Saber que a qualidade das aulas é um diferencial para suas vidas. Fico grato e muito feliz com o reconhecimento de todos que me abraçaram no encerramento das aulas. Desejo realização e felicidade a todos!

11/10/2008

Capacidade de Busca

As empresas fazem propaganda e pesquisas de mercado antes de colocar seus produtos à venda, visando naturalmente, direcionar seus produtos ao público alvo. Fico pensando que para vender água não seria necessário fazer pesquisa nem tão pouco propaganda, já que para viver, necessitamos de beber água todos os dias. Assim, se tomarmos esse exemplo, poderíamos listar mais alguns outros itens de primeira necessidade. Ah sim! Temos a concorrência entre as empresas que fabricam o mesmo produto, isso então justifica a propaganda. Tudo bem, entendi! Agora tem uma coisa que não consigo compreender, por se tratar de uma complexidade dos tempos atuais: A falta de interesse das pessoas, em informações úteis ao seu desenvolvimento profissional, a chamada capacidade de busca. É assustador observar, como a maioria dos candidatos a profissionais se relacionam com informações e atualidades da sua área de atuação.A falta de interesse é muito grande, isso reflete nas entrevistas de emprego e estágio, quando excelentes oportunidades são perdidas por conta da falta de informação. É claro que os poucos que se diferenciam não encontram concorrentes no mercado, correm livres para a vitória bem merecida! Sim, conquistar um bom emprego significa uma vitória, pois é através dele que transformaremos nossa realidade. A informação surge como a boa água, dada de graça, e mesmo assim a grande maioria prefere ficar com sede, pois para utilizá-la seria necessário apenas uma mudança de hábitos, como dedicar uma hora apenas do seu dia, para a leitura. Um profissional bem informado, que tem no seu vocabulário técnico a sua eterna fonte de propaganda, se torna um produto de primeira necessidade!

10/10/2008

Refrigeração Aula 03

Os sistemas físicos que encontramos na Natureza consistem em um agregado de um número muito grande de átomos. A matéria está em um dos três estados: sólido, líquido ou gás: Nos sólidos, as posições relativas (distância e orientação) dos átomos ou moléculas são fixas. Nos líquidos as distâncias entre as moléculas são fixas, porém sua orientação relativa varia continuamente. Nos gases, as distâncias entre moléculas, são em geral, muito maiores que as dimensões das mesmas. As forças entre as moléculas são muito fracas e se manifestam principalmente no momento no qual chocam. Por esta razão, os gases são mais fáceis de descrever que os sólidos e que os líquidos. O gás contido em um recipiente, é formado por um número muito grande de moléculas, 6.02·10²³ moléculas em um mol de substãncia. Quando se tenta descrever um sistema com um número muito grande de partículas resulta difícil (é impossível) descrever o movimento individual de cada componente. Por isto mediremos grandezas que se referem ao conjunto: volume ocupado por uma massa de gás, pressão que exerce o gás sobre as paredes do recipiente e sua temperatura. Estas quantidades físicas são denominadas macroscópicas, no sentido de que não se referem ao movimento individual de cada partícula, e sim do sistema em seu conjunto. Denominamos estado de equilíbrio de um sistema quando as variáveis macroscópicas pressão p, volume V, e temperatura T, não variam. O estado de equilíbrio é dinâmico no sentido de que os constituintes do sistema se movem continuamente. O estado do sistema é representado por um ponto em um diagrama p-V. Podemos levar o sistema desde um estado inicial a outro final através de uma sucessão de estados de equilíbrio. Se denomina equação de estado, a relação que existe entre as variáveis p, V, e T. A equação de estado mais simples é a de um gás ideal pV=nRT, denominada Equação de Clapeyron(foto), onde n representa o número de mols, e R a constante dos gases R=0.082 atm·l/(K mol). Se denomina energia interna do sistema a soma das energias de todas as suas partículas. Em um gás ideal as moléculas somente tem energia cinética, os choques entre as moléculas são supostos perfeitamente elásticos, a energia interna somente depende da temperatura.

08/10/2008

Refrigeração Aula 01

Conceitos Fundamentais da Refrigeração: Propriedades termodinâmicas são características macroscópicas de um sistema, como: volume, temperatura, pressão etc. Estado Termodinâmico: Pode ser entendido como sendo a condição em que se encontra a substância, sendo caracterizado pelas suas propriedades. Processo: É uma mudança de estado de um sistema. O processo representa qualquer mudança nas propriedades da substância. Uma descrição de um processo típico envolve a especificação dos estados de equilíbrio inicial e final. Ciclo: É um processo, ou mais especificamente uma série de processos, onde o estado inicial e o estado final do sistema (substância) coincidem. Substância Pura: É qualquer substância que tenha composição química invariável e homogênea. Ela pode existir em mais de uma fase (sólida, líquida e gasosa), mas a sua composição química é a mesma em qualquer das fases. Propriedades Termodinâmicas de uma Substância: Uma propriedade de uma substância é qualquer característica observável dessa substância.As propriedades termodinâmicas foram concebidas pelo físico francês Nicolas Sadi Carnot(1796-1832), considerado o pai da termodinâmica(foto). Um número suficiente de propriedades termodinâmicas independentes constitui uma definição completa do estado da substância. As propriedades termodinâmicas mais comuns são: temperatura (T), pressão (p), volume (V). Além destas propriedades termodinâmicas mais familiares, e que são mensuráveis diretamente, existem outras propriedades termodinâmicas fundamentais para a análise de transferência de calor, trabalho e energia, não mensuráveis diretamente, que são: energia interna (u), entalpia (h) e entropia (s). Energia Interna (u): São as energias que a matéria possui devido ao movimento de forças intermoleculares. Esta forma de energia pode ser decomposta em duas partes: a) Energia cinética interna ⇒ relacionada à velocidade das moléculas; b) Energia potencial interna ⇒ relacionada às forças de atração entre as moléculas. As mudanças na velocidade das moléculas são identificadas, macroscopicamente, pela alteração da temperatura da substância (sistema), enquanto que as variações na posição são identificadas pela mudança de fase da substância (sólido, líquido ou vapor). Entalpia (h): Na análise térmica de alguns processos específicos, freqüentemente são encontradas certas combinações de propriedades termodinâmicas. Assim é conveniente definir a nova propriedade termodinâmica chamada entalpia.Podemos também definir a entalpia como o aproveitamento da energia gerada por este sistema, considerando naturalmente, as perdas deste sistema. Entropia (s): Esta propriedade termodinâmica representa uma medida da desordem molecular da substância.

07/10/2008

O que é BTU/h?

BTU/h significa Unidade Térmica Britânica por hora. É a unidade mais utilizada no Brasil para se definir a capacidade térmica de um equipamento. 12.000 BTU/h = 1 TR. Para que você tenha uma idéia de qual é o aparelho melhor adaptável ao seu imóvel, estima-se que, um ambiente com área de 6 m², como uma sala de um apartamento, é aconselhável uma oferta de 7.500 BTU's (British Thermal Unity - unidade britânica de medida térmica) de ar frio para deixar a temperatura do espaço confortável para duas pessoas. Essa carga térmica foi calculada para uma instalação em um andar intermediário do imóvel e, para cada pessoa a mais no ambiente, deve ser acrescentado 600 BTU/h. Fonte: Consul

03/10/2008

Conceitos de Pressão

Considere a ação de polimento de um automóvel. Suponha que neste trabalho esteja sendo aplicada uma força F constante, esfregando-se a palma da mão sobre a superfície do carro. Imagine, agora, que se deseja eliminar uma mancha bastante pequena existente no veículo. Nesta ação esfregam-se apenas as pontas dos dedos na região da mancha, a fim de aumentar o “poder de remoção” da mancha. Nos dois casos, a força aplicada F foi a mesma, porém os resultados obtidos no trabalho foram diferentes. Isto acontece por que o efeito do “polimento” depende não apenas da força que a mão exerce sobre o carro, mas também da área de aplicação. A grandeza que relaciona a força F aplicada com a área “A” de aplicação denomina-se “pressão”. Pressão de uma força sobre uma superfície é o quociente entre a intensidade da força normal à superfície e a área dessa. A pressão é uma grande escalar: p=F/A No S.I. a unidade de pressão é o newton por metro quadrado (N/m² ) denominado pascal (Pa). Outras unidades usadas com freqüência são: • centímetro de mercúrio: cmHG • milímetro de mercúrio: mmHg • atmosfera: atm • milibar: mbar Obs. Deve-se observar que o valor da pressão depende não só do valor da força exercida, mas também da área A na qual esta força está distribuída. Uma vez fixado o valor de A , a pressão será, evidentemente, proporcional ao valor de F . Por outro lado, uma mesma força poderá produzir pressões diferentes, dependendo da área sobre a qual ela atuar. Assim, se a área A for muito pequena, poderemos obter grandes pressões, mesmo com pequenas forças. Por este motivo, os objetos de corte (faca, tesoura, enxada, etc.) devem ser bem afiados e os objetos de perfuração (prego, broca, etc.) devem ser pontiagudos. Desta maneira, a área na qual atua a força exercida por estes objetos será muito pequena, acarretando uma grande pressão, o que torna mais fácil obter o efeito desejado. Em outros casos, quando desejamos obter pequenas pressões devemos fazer com que a força se distribua sobre grandes áreas. Para caminhar na neve, uma pessoa usa sapatos especiais, de grande área de apoio, para diminuir a pressão que a impede de afundar. - Pressão de uma coluna de líquido ou pressão hidrostática: Pressão hidrostática ou pressão efetiva (P ef ) num ponto de um fluido em equilíbrio é a pressão que o fluido exerce no ponto em questão. Considere-se um copo cilíndrico com um líquido até a altura h e um ponto B no fundo; sendo A a área do fundo, o líquido exerce uma pressão no ponto B, dada por: Ph=d.g.h Então calcula-se a pressão efetiva pela expressão: p ef = d.g.h - Teorema de Stevin: Da expressão da pressão absoluta, pode-se obter rapidamente a relação do Teorema deStevin : As pressões em A e B são: p A = p 0 + m . g . h A p B = p 0 + m . g . h B Então, a diferença de pressão entre A e B é: p A - P B = m . g . (h A - h B ) ou D p = m . g . D h Teorema de Stevin: "A diferença entre as pressões de dois pontos de um fluido em equilíbrio é igual ao produto entre a densidade do fluido, a aceleração gravitacional e a diferença entre as profundidades dos pontos." Através do teorema de Stevin, pode-se concluir que todos os pontos que estão numa mesma profundidade, num fluido homogêneo em equilíbrio, estão submetidos à mesma pressão.

02/10/2008

Termodinâmica Aula 8

Os sistemas físicos que encontramos na Natureza consistem em um agregado de um número muito grande de átomos. A matéria está em um dos três estados: sólido, líquido ou gasoso: Nos sólidos, as posições relativas (distância e orientação) dos átomos ou moléculas são fixas. Nos líquidos as distâncias entre as moléculas são fixas, porém sua orientação relativa varia continuamente. Nos gases, as distâncias entre moléculas, são em geral, muito maiores que as dimensões das mesmas. As forças entre as moléculas são de pouca intensidade e se manifestam principalmente no momento no qual se chocam. Por esta razão, os gases são mais fáceis de descrever que os sólidos e que os líquidos. O gás contido em um recipiente, é formado por um número muito grande de moléculas, 6,02·10²³ moléculas em um mol de substância. Quando se tenta descrever um sistema com um número muito grande de partículas se torna difícil, ou melhor impossível descrever o movimento individual de cada componente. Por isto mediremos as grandezas que se referem ao conjunto: volume ocupado por uma massa de gás, pressão que exerce o gás sobre as paredes do recipiente e sua temperatura. Estas quantidades físicas são denominadas macroscópicas, no sentido de que não se referem ao movimento individual de cada partícula, e sim do sistema em seu conjunto.


Denominamos estado de equilíbrio de um sistema quando as variáveis macroscópicas pressão p, volume V, e temperatura T, não variam. O estado de equilíbrio é dinâmico no sentido de que os constituintes do sistema se movem continuamente. O estado de equilíbrio do sistema é representado por um ponto em um diagrama p-V. Podemos levar o sistema desde um estado inicial a outro final através de uma sucessão de estados de equilíbrio. Se denomina equação de estado a relação que existe entre as variáveis p, V, e T. A equação de estado mais simples é a de um gás ideal pV=nRT, descrita pelo cientista francês Paul Clapeyron, onde n representa o número de mols, e R a constante dos gases R=0.082 atm·l/(K mol). Se denomina energia interna do sistema a soma das energias de todas as suas partículas. Em um gás ideal as moléculas somente tem energia cinética, os choques entre as moléculas são supostos perfeitamente elásticos, a energia interna somente depende da temperatura.

01/10/2008

Termodinâmica Aula 7

Termoquímica é a parte da Química que trata das trocas de calor que acompanham as reações. As reações químicas podem ser: 

  • Exotérmicas: quando a reação ocorre com liberação de calor (de exo: para fora)
  • Endotérmicas: quando a reação ocorre com absorção de calor (de endo: para dentro)

Toda substância possui uma quantidade de energia armazenada nas suas ligações. Quando a energia contida nos reagentes é maior que a contida nos produtos, temos uma reação exotérmica pois ocorre liberação de energia. 

Quando a energia contida nos reagentes é menor que a contida nos produtos, temos uma reação endotérmica pois ocorre absorção de energia. 

Essa energia contida nas substâncias recebe o nome de entalpia (H). A variação de entalpia para uma dada reação química é dada por ΔH = HP - HR, onde HP é a soma das entalpias dos produtos, HR é a soma das entalpias dos reagentes.

Quando a reação se realiza a pressão constante o ΔH é chamado de calor de reação. Em Termoquímica é usual se expressar as variações de energia nas reações através de quilocalorias (Kcal). 

A quilocaloria é mil vezes o valor de uma caloria. Uma caloria corresponde a quantidade de calor necessária para se elevar de 14,5ºC para 15,5ºC a temperatura de 1g de água. Outra unidade usual em Termoquímica é o Joule (J). Uma caloria equivale a 4,18 J.

+ Acessadas