Mostrando postagens com marcador refrigeração. Mostrar todas as postagens
Mostrando postagens com marcador refrigeração. Mostrar todas as postagens

02/11/2023

ATIVIDADE 1 - INSTRUMENTAÇÃO INDUSTRIAL [RESOLVIDA]

ETAPA 1: Um sensor de temperatura utilizado em um processo industrial possui uma resposta de 2mV/°C e está inserido em um sistema de medição. Para melhorar a leitura por um display, foi colocado um amplificador de ganho 100 na saída desse sensor. Esse sistema tem a capacidade de medir temperaturas de 10°C a 100°C, em uma escala de leitura de 9cm. A partir dessas informações, determine:
a) A faixa de medida (ou RANGE).
b) O alcance (ou SPAN).
c) A sensibilidade.
d) A temperatura correspondente aos 7,4V obtidos da medição.

ETAPA 2: Para a representação de um processo industrial podem ser utilizados alguns diagramas, sendo eles o Diagrama de Bloco de Fluxo, o Diagrama de Fluxo do Processo e o Diagrama de Processos e Instrumentos. Descreva quais são as características e diferenças de cada um desses três tipos de diagramas.


 
 ATIVIDADE RESOLVIDA
 
    R$36,00
     
    CHAVE PIX
     
    eng.carlosjfilho@hotmail.com

19/09/2023

MAPA – REFRIGERAÇÃO E CONDICIONAMENTO DE AR [RESOLVIDO]

Caro estudante, antes de iniciarmos esta jornada, sugiro que você revise todos os conceitos que você aprendeu durante a disciplina. A cada conceito, busque relacionar com alguma aplicação do seu cotidiano. Para reforçar o seu entendimento, relembre os conceitos que você aprendeu em termodinâmica, fenômenos de transporte e máquinas térmicas, e tente aplicá-los ao conteúdo abordado na disciplina Refrigeração e Condicionamento de Ar. A área de refrigeração e condicionamento de ar é uma das principais áreas de atuação do profissional de engenharia mecânica. As aplicações comerciais e industriais que envolvem os sistemas de refrigeração e condicionamento de ar nada mais é do que uma aplicação direta da termodinâmica. Dentre essas aplicações pode-se citar as câmaras frigoríficas, as unidades de recuperação de calor, os sistemas de ar-condicionado e sistemas inteligentes de aquecimento e controle do ar. Um sistema de refrigeração eficiente foi projeto para um edifício comercial para garantir o conforto térmico dos ocupantes. No entanto, uma sala de escritório está enfrentando dificuldades em manter uma temperatura confortável para os ocupantes. No verão, a temperatura fica muito alta, causando desconforto e reduzindo a produtividade. De forma a implementar um sistema de refrigeração e condicionamento de ar eficiente para controlar a temperatura da sala, você foi contratado para prestar consultoria para uma multinacional a respeito dos sistemas de refrigeração da empresa. Como um bom engenheiro, é de seu conhecimento que o princípio de funcionamento das máquinas térmicas tem como base os ciclos termodinâmicos. Como um bom exemplo desses ciclos, pode-se citar o Ciclo Reverso de Carnot (Ciclo de refrigeração de Carnot) e o Ciclo ideal de refrigeração a vapor.
    Para executar as suas atividades com excelência, você deve buscar entender o problema da empresa e, em seguida, buscar uma solução. Durante as reuniões lhe foram solicitados alguns relatórios e esclarecimentos para a empresa, os quais se encontram a seguir:
a) A eficiência energética do escritório também contribui para o conforto e produtividade de seus ocupantes. Dessa forma, o seu gestor pediu a você um estudo dos requisitos de eficiência energética do escritório e como esses requisitos podem afetar no conforto térmico e na carga térmica do ambiente.

b) A fim de avaliar o sistema de refrigeração do escritório, o seu gestor pediu que você elaborasse um documento explicando como o Coeficiente de Performance (COP) do ciclo de refrigeração pode ser obtido, qual a importância do COP e como o valor do COP pode ser interpretado (quando seria um valor aceitável/ideal).

c) Dentre vários fatores, o valor do COP do sistema de refrigeração pode variar dependendo das condições de operação e do tipo de refrigerante utilizado. Dessa forma, o seu gestor solicitou que você explicasse como a escolha do tipo de refrigerante pode afetar o COP.

d) Para ajudar na escolha do fluido refrigerante ideal para o sistema de refrigeração, apresente ao seu gestor pelo menos seis critérios que devem ser seguidos criteriosamente na escolha de um fluido refrigerante.

e) Para finalizar, apresente o esboço de um ciclo de refrigeração por compressão a vapor genérico, destacando os dispositivos que compõem o ciclo termodinâmico em estudo, a finalidade e o princípio de funcionamento de cada dispositivo do ciclo. Apresente também a equação geral do balanço de energia, bem como o balanço de energia simplificado para cada dispositivo do ciclo. Explique as simplificações realizadas para a obtenção da equação simplificada do balanço de energia para cada dispositivo.



ATIVIDADE RESOLVIDA
 
    R$60,00
     
    CHAVE PIX
     
    eng.carlosjfilho@yahoo.com.br

13/07/2023

ATIVIDADE 4 - MÁQUINAS TÉRMICAS

 1ª QUESTÃO “Um ciclo termodinâmico pode ser caracterizado como um ciclo fechado ou aberto. Nos ciclos fechados, o fluido de trabalho retorna ao ponto de partida nas condições iniciais e o ciclo de reinicia, assim como ocorre nas geladeiras. No caso dos ciclos abertos, ao contrário de recircular, o fluido é renovado ao final de cada ciclo. Os motores de automóveis são exemplos de ciclos termodinâmicos abertos, já que ocorre a exaustão e a substituição dos gases de combustão por uma mistura de combustível e ar fresco após cada ciclo. Dessa forma, o motor opera em um ciclo mecânico, mas o fluido de trabalho não completa o ciclo termodinâmico.” Diante do exposto, considere que 10 kg de água escoa em um ciclo termodinâmico fechado. Após uma etapa do ciclo, a corrente se encontra com título de 80% e pressão de saturação de 1MPa. Ao absorver calor do ambiente a pressão constante, a corrente adquire a temperatura de 300 C. Considerando o processo descrito, avalie as alternativas abaixo:

I. Na pressão de saturação de 1MPa e título de 80%, a temperatura da mistura é de aproximadamente 180 C.
II. Na pressão de saturação de 1MPa e título de 80%, a corrente se encontra com entalpia de aproximadamente 2015 kJ.kg .
III. A quantidade de calor absorvido pela corrente foi de 6760 kJ.
IV. Na pressão de saturação de 1MPa e título de 80%, a massa de vapor na mistura é de 2 kg e de líquido 8 kg.
V. Após absorver calor do ambiente, a corrente se torna uma corrente de vapor superaquecido com entalpia de aproximadamente 3051 kJ.kg . É correto o que se afirma em:

I, II e IV, apenas.
I, III e V, apenas.
II, III, IV e V, apenas.
I, III, IV e V, apenas.
I, II, III, IV e V.
 

2ª QUESTÃO O ciclo reversível mais conhecido é o ciclo de Carnot, composto por quatro processos reversíveis, sendo dois isotérmicos e dois adiabáticos. A máquina térmica teórica que funciona segundo o ciclo de Carnot é denominada “máquina térmica de Carnot”. Um exemplo de máquina térmica é um gás confinado em um conjunto pista-cilindro adiabático. Outro exemplo é a alimentação de uma turbina por um vapor produzido em uma caldeira. Considere uma central termelétrica que opera com vapor superaquecido a 450 °C e 8,0 Mpa. O condensador da central rejeita calor de modo que o fluido de trabalho irá sair a 100 C e 100 kPa. A respeito do processo descrito e, assumindo que a central termoelétrica opera segundo o ciclo de Carnot, é correto afirmar que:

A máxima eficiência térmica do ciclo é de aproximadamente 48%.
A fonte fria é o vapor superaquecido e a fonte quente é o condensador.
O fluido de trabalho sai do condensador na forma de líquido sub resfriado.
O máximo rendimento teórico passível de ser obtido é de aprox. 78 %.
O máximo rendimento sempre é obtido, já que os processos reais são reversíveis.
 

3ª QUESTÃO Em grande parte das aplicações industriais a amônia é utilizada como fluido refrigerante, a exemplo do sistema de refrigeração por absorção. No sistema de refrigeração por absorção, o fluido refrigerante mais comum é a amônia devido à baixa temperatura de evaporação da amônia e à sua alta capacidade de troca térmica. Como mencionado, a amônia é bastante utilizada como fluido de trabalho nos sistemas de refrigeração industrial. Em um determinado processo, a amônia entra no trocador de calor 1-1 (U=0,65 kW.m . C ) a uma vazão de 0,5 kg por segundo, a 80 C, 600kPa e com 1630 kJ.kg de energia. Na saída a amônia se encontra a 30 °C, 500 kPa e com entalpia de 1500 kJ.kg de energia. A amônia troca calor com uma corrente de água fria que circula em contracorrente no processo a uma vazão de 2 kg por segundo e entra no trocador a 25 °C. Sabendo que a água possui densidade igual a 1000 kg.m e capacidade calorífica igual a 4,2 kJ.kg .K , avalie as alternativas abaixo:

I. O trocador de calor em questão é um condensador.
II. Em um trocador de calor não há realização de trabalho e as energias cinética e potencial podem ser desprezadas.
III. A troca térmica no trocador de calor é de 65000 W.
IV. A água sai do trocador de calor a aproximadamente 33 C.
V. A área do trocador de calor é de aproximadamente 5,35 m .
É correto o que se afirma em:

 I, II e IV, apenas.
II, III, IV e V, apenas.
I, III e V, apenas.
I, II, IV e V, apenas.
I, II, III, IV e V.
 

4ª QUESTÃO“Nos sistemas abertos existe fluxo de massa pela fronteira que carrega energia consigo, além de calor e trabalho. O fluxo de massa deve obedecer à lei da conservação da massa. O conhecimento da Primeira Lei para sistemas abertos é importante para o estudo de caldeiras, compressores, sistemas de refrigeração e muitas outras aplicações de interesse Equipamentos podem ser considerados sistemas abertos, como as caldeiras a vapor, aquecedores em geral e trocadores de calor. Por sua vez, as máquinas também podem ser tratadas como sistemas abertos, a exemplo das bombas, compressores, turbinas e motores.” Uma caldeira é alimentada com água a 80 °C a 7 atm e deve produzir 2000 kg por hora de vapor saturado a 160 °C e pressão de 6 atm. Sabendo que a água possui densidade igual a 1000 kg.m e capacidade calorífica igual a 4,2 kJ.kg .K , avalie as alternativas abaixo:

I. A vazão de água que alimenta a caldeira é de 2 m por hora.
II. A temperatura de saturação do vapor a 6 atm é de aproximadamente 353 K.
III. A água recebe 187 kW de calor sensível para ser aquecida até o ponto de líquido saturado.
IV. A água recebe 1158 kW de calor latente para ser aquecida do ponto de líquido saturado até o ponto de vapor saturado.
V. A taxa de calor fornecido pela caldeira é de aproximadamente 1345 kW.
É correto o que se afirma em:

I, II e IV, apenas.
II, III, IV e V, apenas.
I, III e V, apenas.
I, III, IV e V, apenas.
I, II, III, IV e V.
 

5ª QUESTÃO Turbina a vapor é um tipo de máquina térmica que produz trabalho a partir da expansão do vapor em seu interior, ou seja, a partir da variação de volume do fluido de trabalho. A turbina de vapor é aplicada em centrais termoelétricas a vapor, sendo alimentada por vapor superaquecido em alta pressão e descarregando vapor saturado em baixa pressão. Uma determinada turbina recebe vapor a 1,75 kg.s , 6 MPa e 3045 kJ.kg , e descarrega o vapor a 90 C e 2660 kJ.kg . Sabendo que a energia cinética e potencial pode ser desprezada e que no processo de expansão a turbina dissipa 30 kW de calor para o meio, avalie as alternativas abaixo:
I. O vapor superaquecido alimenta a turbina a aproximadamente 350 C.
II. A pressão do vapor saturado na descarga da turbina é de aproximadamente 70 kPa.
III. O vapor superaquecido alimenta a turbina a uma vazão de aproximadamente 2,66 m por hora.
IV. Na descarga da turbina o vapor sai a 6,3 toneladas por hora.
V. O trabalho realizado é de aproximadamente 674 kW e está sendo fornecido para a vizinhança.
É correto o que se afirma em:

I, II e IV, apenas.
II, III, IV e V, apenas.
I, III e V, apenas.
I, II, IV e V, apenas.
I, II, III, IV e V.

 
 ATIVIDADE RESOLVIDA
 
    R$15,00
     
    CHAVE PIX
     
    eng.carlosjfilho@hotmail.com

04/07/2023

MAPA – MÁQUINAS TÉRMICAS

O funcionamento de uma máquina térmica se fundamenta nas leis da termodinâmica. A primeira lei da termodinâmica aplicada para um sistema aberto é importante para o estudo de caldeiras, compressores, sistemas de refrigeração e muitas outras aplicações. Por outro lado, a segunda lei da termodinâmica é que garante que o processo seja realmente possível de ser realizado. A figura a seguir apresenta um esquema do ciclo de uma central termelétrica:

Uma central termelétrica residencial utiliza uma caldeira flamotubular para a produção de vapor a uma pressão de 10 kgf.cm-2 e temperatura de 200oC. O ambiente externo se encontra a 25oC, e a água (ρ = 1000 kg.m-3) é bombeada por uma bomba e entra na caldeira a 60oC, 11 kgf.cm-2 e a uma vazão de 7 m3.h-1. A caldeira é alimentada por óleo combustível, cujo Poder Calorifico Inferior (PCI) é igual a 9800 kcal.Kg-1. Na caldeira flamotubular, os gases quentes oriundos da combustão circulam pelo interior dos múltiplos tubos imersos em um reservatório de água. Assim, os gases quentes aquecem a água do reservatório, transformando-a em vapor.

A caldeira horizontal do tipo flamotubular em questão possui dois passes, e o primeiro passe ocorre no tubo fornalha central (Ø 600 x 5000 mm), e o segundo, em um feixe de 200 tubos (Ø 60 x 5000 mm). O primeiro passe é responsável apenas pela troca de calor sensível, uma vez que parte do calor gerado na fornalha é irradiado para a coluna de água que envolve o tubo. Já no segundo passe, ocorre a troca térmica entre a água aquecida e os gases de combustão, de forma a promover a vaporização da água.

A relação teórica (ou estequiométrica) de ar e combustível que alimenta a fornalha, em kgar.Kgcomb, é igual a 1,38.PCI.10-3. No entanto, de forma a maximizar a queima completa do combustível, o ar é injetado na caldeira com 40% de excesso. Durante a queima, 4% do calor é perdido devido às queimas incompletas e formação de cinzas. Dessa forma, a eficiência da fornalha é de 96%, e a quantidade de calor gerado na fornalha por quantidade de combustível que alimenta a caldeira é igual a 0,96.PCI. No entanto, 30% do calor gerado é irradiado na fornalha e utilizado para aquecer a água que envolve o tubo da fornalha na parte inferior da caldeira. Em contrapartida, 70% do calor gerado na fornalha se encontra nos gases de queima que seguem para os tubos da parte superior da caldeira, onde ocorrerá a geração do vapor.

No vaporizador, 6% do calor é perdido devido à condução e convecção para o ambiente. Assim, a eficiência total da caldeira é de 90% e a quantidade de calor gerado na caldeira por quantidade de combustível que alimenta a caldeira é igual a 0,90.PCI. O gás de queima que entra nos tubos do vaporizador possui um calor específico médio de 0,30 kcal.kg-1oC-1, entra nos tubos do vaporizador (segundo passe) a 1300 oC e sai na chaminé a 250 oC e 12 m.s-1. Por outro lado, o vapor gerado alimenta a turbina a vapor.

A turbina a vapor é um tipo de máquina térmica motora, isto é, ela produz trabalho a partir da expansão do vapor em seu interior. Na entrada da turbina a vapor, o vapor se encontra superaquecido e em alta pressão. Por outro lado, na saída da turbina, o vapor se encontra saturado e em baixa pressão. No processo de expansão, a turbina dissipa 50 kW de calor para o meio e a razão entre as pressões de operação na saída e na entrada é igual a 10%.

O vapor saturado que sai da turbina segue para um trocador de calor que opera a pressão atmosférica e possui um coeficiente global de transferência de calor igual a 35 kcal.h-1.m-2.oC-1. Após a troca térmica no trocador de calor, o vapor saturado condensa e a água a 60oC segue para a bomba e é retroalimentada na caldeira, fechando o ciclo.

A partir do problema exposto, elabore uma ficha técnica contendo as informações a seguir e explique o que você faria para aumentar a eficiência do ciclo termodinâmico em estudo. Como bom(a) engenheiro(a), não deixe de demonstrar os seus cálculos e explicar todas as considerações e o passo a passo utilizado para obter as informações.

Para auxiliá-lo(a) na execução das suas atividades, além do livro, utilize a plataforma Minha Biblioteca para utilizar materiais complementares. Para isso, entre no Studeo e acesse a Biblioteca Digital Unicesumar ou a plataforma Minha Biblioteca e busque pelo livro Máquinas Térmicas Estáticas e Dinâmicas (FFILIPPO FILHO, G. Máquinas Térmicas Estáticas e Dinâmicas: fundamentos de termodinâmica, características operacionais e aplicações. São Paulo: Érica, 2014.).

 
 ATIVIDADE RESOLVIDA
 
    R$60,00
     
    CHAVE PIX
     
    eng.carlosjfilho@hotmail.com

01/07/2023

MAPA – FÍSICA GERAL E EXPERIMENTAL II – 52/2023 [LIBERADO]

Você foi contratado(a) como trainee na empresa X e para avaliar o seu potencial como colaborador para a possibilidade de efetivação na empresa, a gerência solicitou que você fizesse uma avaliação de alguns processos e setores, buscando melhorias que possam beneficiar a empresa. Para tanto, é necessário que você cumpra as quatro etapas que estão descritas a seguir:

ETAPA 1 A sala dos engenheiros é iluminada por um circuito com três lâmpadas incandescentes em paralelo, cada lâmpada possui uma resistência de 10 Ω e uma potência de 60 W. Por razões de economia, a gerência solicitou a substituição das lâmpadas por lâmpadas led com 20 Ω e 10 W.

1.a. Considerando que a tensão da rede seja de 110 V, determine quantas lâmpadas led serão necessárias para substituir as lâmpadas incandescentes.
1.b. Sabendo que cada lâmpada nova custou R$ 20,00, quantos dias serão necessários para que as novas lâmpadas se paguem com a economia de energia? Suponha que o preço por kWh seja de R$ 0,50 e que a lâmpada fique acesa 8 horas por dia.

ETAPA 2 A empresa X está buscando padronizar seus procedimentos. Diante disso, você notou que na sala em que está trabalhando possui um gerador cujas características da força eletromotriz ε e resistência interna não foram especificadas. Para resolver esse problema você foi até o laboratório e por meio de várias medidas de potencial entre os terminais desse gerador e da corrente elétrica que passa neste circuito obteve a seguinte curva característica:

Analisando Analisando o gráfico obtido no experimento, determine:
2.a. A força eletromotriz do gerador.
2.b. A resistência interna do gerador.
2.c. A equação característica desse gerador.
2.d. A corrente de curto-circuito.

ETAPA 3 Uma das salas de produção de componentes da empresa X tem as seguintes dimensões: 10 m x 10 m x 3 m. Essa sala produz alguns componentes sensíveis à temperatura e para isso deve ser mantida em 15 °C. Atualmente, o controle diário da temperatura da sala está indicando média de 28 °C. Diante disso, a gerência solicitou que você que fosse instalado um segundo sistema para lidar com o excesso de calor. Para tanto, determine a potência necessária desse novo sistema para manter a sala em 15 °C, sabendo que o sistema funciona continuamente. Considere a densidade do ar 1,225 kg/m³ e calor específico do ar 1000 J/kg.K.

ETAPA 4 A empresa possui uma máquina térmica que utiliza gás natural como combustível e gera 500 kW de energia elétrica. Buscando otimizar a utilização dos recursos energéticos, a gerência da empresa resolveu aproveitar o calor gerado pela máquina térmica para atender a necessidade de aquecer a água de 20°C para 60 °C.

 
 ATIVIDADE RESOLVIDA
 
    R$60,00
     
    CHAVE PIX
     
    eng.carlosjfilho@hotmail.com

23/06/2023

ATIVIDADE 3 - FÍSICA II - 52/2023 [RESOLVIDA]

A física térmica estuda a tendência dos processos naturais convergir para uma situação de equilíbrio, isso pode ser observado nos casos em que corpos mais quentes cedem calor aos corpos mais frios. A transferência dessa energia térmica é possível graças a alguns processos.
 
Fonte: GUIMARÃES, José Osvaldo de Souza. Física Geral e Experimental II. Maringá-PR: Unicesumar, 2019. 400 p.

Cenário
Imagine que você está encerrando um churrasco em uma churrasqueira a carvão e percebe que ainda existe uma quantidade considerável de brasas incandescentes. Você então lembra que recentemente viu uma técnica que permitia apagar o carvão e reaproveitá-lo para o próximo churrasco, simplesmente adicionando em cima do braseiro uma sacola plástica com água.
 
Elaborado pelo professor, 2023.

Considerações
- Massa de carvão: 5 kg;
- Temperatura do carvão: 200 °C;
- Temperatura da água: 25 °C;
- Calor específico da água: 1 cal/g °C;
- Calor específico do carvão vegetal: 0,2 cal/g °C;
 
A partir do entendimento deste cenário e considerando os conhecimentos adquiridos por meio da leitura do livro didático, aulas conceituais e ao vivo, responda as seguintes questões:
 
Questão 01: Comparando os calores específicos da água e do carvão, explique como é possível apagar o braseiro com um saco plástico cheio de água.
 
Questão 02: Cite quais são os processos de transmissão do calor envolvidos na redução da temperatura do carvão pelo saco plástico contendo água.
 
Questão 03: Sabendo que, após certo período de tempo, a temperatura do carvão apagado é 30 °C e que a temperatura final da água é de 75 °C, qual o volume em litros de água foi adicionado no saco plástico para que fosse reduzida a temperatura do carvão? Considere a densidade da água 1 g/cm³.

 
 ATIVIDADE RESOLVIDA
 
    R$36,00
     
    CHAVE PIX
     
    eng.carlosjfilho@hotmail.com

25/05/2023

ATIVIDADE 1 – MÁQUINAS TÉRMICAS [RESOLVIDA]

As máquinas térmicas estão presentes em várias situações do nosso cotidiano. Umas das aplicações é nas centrais termelétricas, em que o ciclo se inicia com a geração de vapor nas caldeiras para a produção de energia mecânica nas turbinas e a subsequente
conversão da energia mecânica em energia elétrica. As caldeiras também são chamadas de geradores de vapor d’água, uma vez que elas se destinam à produção de vapor de água a partir da energia liberada por um combustível. Para a produção de vapor, o fluido quente (gases da combustão) e os fluidos frios (água, vapor e ar) circulam pelos componentes principais de uma caldeira, os quais são dispostos de forma que os fluidos circulem em contracorrente. A partir do exposto e a respeito das máquinas térmicas e das centrais termelétricas, faça uma breve pesquisa sobre as caldeiras. Para auxiliá-lo(a) na execução das suas atividades, além do livro, utilize a plataforma Minha Biblioteca para utilizar materiais complementares.
 

A partir da pesquisa realizada, faça o que se pede:

a) Descreva o funcionamento de uma caldeira, apresentando os seus componentes principais.

b) O que seria a carga térmica de uma caldeira? Explique relacionando a carga térmica com as características operacionais e os mecanismos de transferência de calor presentes em uma caldeira.

 
 ATIVIDADE RESOLVIDA
 
    R$30,00
     
    CHAVE PIX
     
    eng.carlosjfilho@hotmail.com

RELATÓRIO TÉCNICO [Sistemas Térmicos]

Caros estudantes, a disciplina de Sistemas Térmicos é muito importante para o curso de Engenharia, pois podemos conhecer os diversos tipos de trocadores de calor disponíveis e compreender como cada um deles pode ser aplicado na dissipação do calor gerado em um Sistema Térmico.

 A presente avaliação é baseada na aula prática de Sistemas Térmicos, que tem por objetivo desenvolver a habilidade de analisar e identificar o comportamento de trocadores de calor, considerando a troca térmica apenas com o ar, com a água e em conjunto (ar-água), além de permitir compreender a eficiência da troca térmica quanto à proximidade do condensador a uma fonte de calor ou a uma fonte de perda de calor.

 A avaliação contínua (AVC) é um instrumento avaliativo da UNISA, o qual desenvolve diversas ferramentas de avaliação. Neste caso, baseado em um experimento, serão avaliados os pontos acerca da sua montagem, visualização, acompanhamento e teste, e estes pontos deverão ser registrados em um Relatório de Experiência, o qual deverá ser entregue para avaliação.

Esta AVC experimental ocorrerá presencialmente no polo, devendo ser agendada previamente, conforme o calendário acadêmico da disciplina.

Conforme roteiro de experimento a ser apresentado no polo pelo técnico de laboratório da UNISA.

 
 ATIVIDADE RESOLVIDA
 
    R$60,00
     
    CHAVE PIX
     
    eng.carlosjfilho@hotmail.com

24/05/2023

RELATÓRIO TÉCNICO [Aquecimento, Ventilação, Ar Condicionado]

Caros estudantes, a disciplina de Aquecimento, Ventilação, Ar-condicionado e Refrigeração (AVAC-R) é muito importante para o curso de Engenharia, pois podemos conhecer os diversos tipos de máquinas, equipamentos e dispositivos disponíveis para o aquecimento, a ventilação, o ar-condicionado e a refrigeração, e compreender como cada um deles pode ser aplicado nos sistemas térmicos.
 

A presente avaliação é baseada na aula prática de Sistemas de Resfriamento, que tem por objetivo desenvolver a habilidade de analisar e identificar o comportamento do ciclo termodinâmico associado aos sistemas de refrigeração, operando, simulando o funcionamento e os defeitos em um sistema de compressão mecânica à vapor, além de discutir o funcionamento e a eficiência do evaporador, do condensador, do compressor e da válvula de expansão.
 

A avaliação contínua (AVC) é um instrumento avaliativo da UNISA, o qual desenvolve diversas ferramentas de avaliação. Neste caso, baseado em um experimento, serão avaliados os pontos acerca da sua montagem, visualização, acompanhamento e teste, e esses pontos deverão ser registrados em um Relatório de Experiência, o qual deverá ser entregue para avaliação.

Essa AVC experimental ocorrerá presencialmente no polo, devendo ser agendada previamente, conforme o calendário acadêmico da disciplina.
 

Conforme roteiro de experimento a ser apresentado no polo pelo técnico de laboratório da UNISA, faça o que se pede:

 1) Documente os dados coletados nos passos 5, 6 e 7 do roteiro do experimento.

2) Compare os dados coletados em cada passo e explique como as variáveis de cada passo influencia na eficiência do condensador.


 
 ATIVIDADE RESOLVIDA
 
    R$60,00
     
    CHAVE PIX
     
    eng.carlosjfilho@hotmail.com

04/05/2023

ATIVIDADE 4 - DESENHO TÉCNICO [RESOLVIDA]

  Questão 1 De acordo com a ABNT (1994 apud MONTEIRO, 2018, p. 173-174):

"Em desenho de máquinas, temos símbolos que padronizam o tipo de representação, o que ocorre também na representação das edificações. Elementos que se repetem com frequência, como portas e janelas, são normalizados visando facilitar a representação. Para melhor compreensão do projeto como um todo, assim como nos desenhos de peças e máquinas, podemos inserir cortes, vistas e representações de detalhes tantos quanto necessário. A diferença é que, nas edificações, esses desenhos receberão nomes distintos dos apresentados nas representações ortogonais de peças. ​A forma mais usual de representação de uma edificação é a planta; esse tipo de representação é entendido como sendo uma projeção ortogonal, em que um plano secante paralelo ao piso atravessa a edificação a uma altura de aproximadamente 1,5 m do piso de referência."

Fonte: MONTEIRO, C. V. B. Desenho Técnico. Maringá: UniCesumar, 2018.

Sobre tipos de plantas, analise as afirmativas a seguir:

I. As plantas de situação apresentam ao leitor do projeto como estará disposta a cobertura da edificação; nessa representação, apresenta-se o tipo de telha e a inclinação do telhado. É o equivalente à vista superior do desenho.
II. A planta de situação deve conter o norte indicado, as ruas que estão ao entorno da edificação, o desenho da área do terreno a ser construído, dentre outros dados possíveis.
​III. A planta de locação deve conter, além das distâncias dos afastamentos, as edificações que, porventura, já estejam construídas no terreno; elementos como rampas e vegetações já existentes também devem ser representados.
​IV. As plantas de cobertura mostram os detalhes de posição dos pilares, as dimensões dos cômodos, direção em que as portas e janelas deverão abrir e as ligações da edificação entre os seus cômodos e a área externa do terreno.

É correto o que se afirma em:
Alternativas
Alternativa 1:

I, II e IV, apenas.
Alternativa 2:

II, III e IV, apenas.
Alternativa 3:

IV, apenas.
Alternativa 4:

II, apenas.
Alternativa 5:

II e III, apenas.

Questão 2 O método de projeção ortogonal "consiste, basicamente, em representar de modo mais real possível as dimensões da peça em todas as suas direções, mas, diferentemente do processo em perspectiva, em que todas as vistas estão unidas, neste processo, elas são separadas visando a uma maior clareza. Ao analisarmos um projeto feito utilizando o método de projeção ortogonal, nós percebemos que, apesar de possuir vários desenhos, a separação desses elementos em vistas, resulta em projeto mais limpo e de fácil compreensão".

Fonte: MONTEIRO, C. V. B. Desenho Técnico. Unicesumar, 2018. p. 119.

Com base na projeção ortogonal representada na Figura 1, indique qual é a única perspectiva isométrica correta:


Figura 1 - Projeção ortogonal de uma determinada peça
Fonte: o autor.
Alternativas
 
Questão 3 Segundo Cruz e Amaral (2012), o sistema de projeção utilizado no desenho técnico é o sistema de projeção ortogonal, pensado e idealizado por Gaspar Monge, que foi um matemático, desenhista e inventor francês do século XVIII, considerado um dos pais da Geometria Descritiva. Nesse sistema, os elementos dos objetos são projetados sobre planos por meio de raios projetivos que partem de determinada posição e atingem o plano de representação. Assim, quando fazemos um desenho baseado no sistema de projeção ortogonal, ele costuma ter uma associação de três vistas da peça, e, no Brasil, com o uso das normas da ABNT, representamos utilizando como referência o primeiro diedro.
 
Fonte: CRUZ, D. C.; AMARAL, L. G. H. Apostila de Geometria Descritiva. Barreiras: UFBA, 2012.
 
Com base na representação isométrica, indique qual é a única alternativa que representa corretamente a projeção ortogonal da peça da Figura 1:


Figura 1 - Peça representada em perspectiva isométrica
Fonte: o autor.
Alternativas

 

Questão 4 Segundo Monteiro (2018, p. 159), "os diagramas elétricos são esquemas de desenho que mostram como deve ser feito o projeto elétrico; para tanto, é necessário ao projetista ter construído previamente a planta baixa da edificação, pois é a partir dela que, com símbolos normalizados, propostos pela NBR 5444, definimos quais as condições e elementos necessários à construção do sistema elétrico. ​O padrão para as instalações mais simplificadas é o diagrama Unifilar. Nesse tipo de diagrama, são definidas as posições das tomadas, a menor distância das passagens dos eletrodutos e a posição do quadro de distribuição".

Fonte: MONTEIRO, C. V. B. Desenho Técnico. Maringá: UniCesumar, 2018.


Figura 1 - Representação de instalação elétrica utilizando diagrama unifilar
Fonte: https://portaldaengenharia.com/diagrama-eletrico/diagrama-unifilar/. Acesso em: 15 mar. 2023.

Com base nos conhecimentos de representação de diagramas elétricos unifilares, e tendo como base a Figura 1, assinale a alternativa correta:
Alternativas
 
 ATIVIDADE RESOLVIDA
 
    R$15,00
     
    CHAVE PIX
     
    pixblog@mail.com

02/05/2022

Válvulas Industriais: Símbolo Soldado, Flangeado e Roscado

Conexões industriais são os meios utilizados para unir tubulações a outras tubulações e a equipamentos, como: trocadores de calor, vasos de pressão e válvulas – as válvulas também devem ser tratadas como equipamentos. Os principais tipos de conexões industriais são:

  • Conexão roscada
  • Conexão soldada
  • Conexão flangeada

Existem outros tipos, entretanto, vamos falar dessas três que são as mais encontradas na indústria.

CONEXÃO ROSCADA

É o tipo de conexão mais simples e consiste em fazer uma rosca externa na ponta do tubo para encaixar a rosca interna em outro elemento de conexão. As conexões rosqueadas mais comuns entre dois tubos são soquetes e uniões. Para conexões em válvulas, filtros e outros elementos de linha, a conexão rosqueada é feita diretamente no corpo do elemento, que já possui roscas internas. Este tipo de conexão é recomendado para tubos de até duas polegadas, podendo existir conexões de até quatro polegadas. Sua principal vantagem é o baixo custo de instalação. Porém podem apresentar vazamentos se não for bem instalado, além de ser de difícil manutenção. Existem diversos padrões de rosca, sendo os mais comuns:

  • NPT
  • BSPT
  • BSPP

CONEXÃO SOLDADA

Conexão soldada consiste na adição de material entre dois componentes para uni-los. Os tipos de solda mais comuns são:

  • Solda de topo

Tipo de solda mais comum para ligação de tubos. Consiste na abertura de um chanfro ou [bisel] nas extremidades a serem conectadas e o preenchimento de solda “por cima”.

  • Solda de encaixe

Este tipo de soldagem é mais comum em conexões entre tubos e elementos de linha, como válvulas. Trata-se de "encaixar" o tubo no bocal ou junta e preencher a solda com o ângulo de contato entre as peças. A principal vantagem é a estanqueidade. Vazamentos são muito difíceis se a solda for bem feita. O problema é a dificuldade de manutenção da linha, pois exige o corte das soldas para qualquer desmontagem.

CONEXÃO FLANGEADA

Consiste em flanges, parafusos ou conexões, para a união entre as duas extremidades do flange e as juntas de vedação. Os flanges podem ser fixados ao tubo por soldagem de topo, no caso de flanges WN, por soldagem de soquete, no caso de SO e SW, ou conexões rosqueadas, para flanges rosqueados. Sua principal vantagem é a facilidade de manutenção e remoção dos componentes instalados na linha de produção. No entanto, eles podem ter vazamentos. Essas conexões devem ter um plano de manutenção e estar prontas para substituição da gaxeta. Os padrões de flange mais comuns são ASNI/ASME e DIN, que variam muito em tamanho.


 



10/01/2019

Manutenção em refrigeração

Quando se fala em refrigeração, não se deve ter em mente apenas os equipamentos domésticos, como geladeiras ou condicionadores de ar. Todo sistema que opera baixando a temperatura dos ambientes, proporcionando bem-estar para as pessoas, deve ser inserido nesta definição. Assim, a refrigeração tem aplicação nas categorias comercial, industrial, transporte etc.
Desta forma, pode-se vislumbrar o quão vasto é o mercado de trabalho para o profissional de manutenção de refrigeradores. Trata-se de um nicho de mercado bastante técnico, que exige constantes atualizações para o acompanhamento das mudanças relacionadas à tecnologia e, até mesmo, aos hábitos dos consumidores.
O profissional especializado deve ter condições de diagnosticar e reparar os principais defeitos em equipamentos de refrigeração, tais como alto consumo de energia, alta ou baixa refrigeração e choque elétrico. Assim, ele deve ter conhecimentos, dentre outras coisas, de eletricidade, termodinâmica, sistema básico de refrigeração e componentes dos diversos tipos de refrigeradores. Curso de Refrigeração


19/12/2018

Combinando corretamente os materiais em ambientes corrosivos

Selecionar os materiais corretos para uma determinada aplicação industrial é uma das etapas de projeto mais importantes para que o sistema seja seguro e rentável. Muitas vezes negligenciada, essa etapa costuma ser realizada considerando apenas o aspecto econômico. Todavia, a seleção das melhores ligas para obter o controle da corrosão é uma estratégia que traz benefícios: segurança e integridade para os equipamentos, desempenho otimizado (com menos intervenções para manutenção) e redução do tempo de máquina parada, além de vida útil mais longa. Todas essas vantagens significam economia considerável de recursos.

Evite usar ligas melhores apenas nas peças críticas 

A combinação de materiais diferentes é uma prática muito comum, principalmente quando a escolha da liga é decidida com base no custo e nos prazos de entrega. Embora haja situações nas quais a mistura de materiais pode ser a melhor ou mesmo a única solução, existem também aplicações de engenharia em que esta prática não agrega valor e por isso deve ser evitada. 

No mercado de instrumentação, frequentemente encontramos problemas de corrosão. Nesses casos, a solução mais comum é selecionar componentes mais resistentes para evitar que uma determinada falha por corrosão no sistema aconteça. Mais cedo ou mais tarde, o custo desta nova liga será percebido, e as substituições precisarão ser justificadas. Então, num esforço para reduzir custos, decide-se usar ligas de graus mais elevados somente nas partes mais críticas do projeto.

Como definir o que é crítico ou não?

Como exemplo, considere um tubo de instrumentação com conexões e válvulas. Tradicionalmente, a indústria de petróleo e gás tem usado esses itens fabricados com aço inoxidável série 300. No entanto, o nível de severidade exigido nesta aplicação aumentou sensivelmente – tanto nas condições climáticas e operacionais dos ambientes de trabalho quanto nos critérios de projeto, nas normas de segurança e na expectativa de vida útil dos componentes. Se vinte anos atrás o aço inoxidável era o material mais escolhido para operar nesses ambientes altamente corrosivos, atualmente ele deixou de ser o mais adequado para esse fim. 

As ligas metálicas resistentes à corrosão estão mais disponíveis do que nunca, mas suas propriedades excepcionais têm um preço. Erradamente, certos componentes são vistos como mais "duráveis" ou até mesmo "inquebráveis" apenas por serem “mais volumosos". Devido à sua espessura limitada, o tubo é considerado a parte crítica do sistema, enquanto a conexão ou a válvula seriam os itens "menos críticos" do conjunto. Assim, seguindo essa lógica duvidosa, costuma-se selecionar uma liga de grau superior para o tubo e outra de grau inferior para conexões e válvulas. Mas será que isso está correto?

Tamanho não importa

Se os componentes de instrumentação sofressem apenas corrosão regular e não estivessem sujeitos a cargas de tensão, de forma que as taxas de corrosão pudessem ser calculadas e os riscos gerenciados, talvez fosse possível aceitar as premissas acima. Devido às suas condições operacionais particulares, contudo, na realidade eles enfrentam tanto corrosão localizada quanto desafios mecânicos.

As falhas típicas dos sistemas empregados na indústria de petróleo e gás são devidas à corrosão localizada, como “pites” ou “frestas”. A ação combinada do ambiente corrosivo na presença de estresse por tensão (como vibração) pode causar fragilização e falha total do equipamento em questão de segundos. A corrosão induzida por cloro é causa comum de falha nas aplicações offshore. Basta haver estresse por tensão e uma pequena fenda causada pelo cloro para que as fissuras se alastrem. Quando existe fissura no material e certos níveis de estresse por tensão, mesmo tubos mais grossos não conseguem impedir que as rachaduras se expandam; somente vai demorar um pouco mais do que nas seções mais finas. Portanto, nesses casos o tamanho não importa.




Na foto: Ambiente corrosivo e vibração podem provocar fragilização por corrosão sob tensão e falha no equipamento após seis meses. No exemplo mostrado, conexão do instrumento e tubo de materiais diferentes foram aplicados em ambiente offshore corrosivo.
Inadequado para tubos, inadequado para conexões

Para serem seguras e rentáveis, as operações offshore dependem da correta seleção de materiais e de um bom projeto para minimizar cargas desnecessárias. Se um material não for adequado para a tubulação, não deve ser aceito em outro componente. Afinal, ambas as partes serão expostas às mesmas condições operacionais e ambientais e, portanto, estarão sujeitas aos mesmos mecanismos de falha.

Segundo a norma de seleção de materiais NORSOK M-001, ''sempre que metais diferentes forem acoplados em uma tubulação deverá ser feita avaliação de corrosividade. Se for provável ocorrer corrosão galvânica, deverão ser empregados métodos para mitigação''. A norma também determina que "nas conexões galvânicas entre materiais diferentes sem isolamento deve-se supor que a taxa de corrosão local da interface será aproximadamente três vezes maior que a taxa média de corrosão". A proteção catódica em sistemas de instrumentação tende a não ser economicamente viável, bem como o isolamento entre tubo e válvula ou conexão.

Por tudo isso, a combinação de materiais deve ser sempre cuidadosamente avaliada. A correta seleção dos materiais é fundamental para garantir sistemas rentáveis, evitando riscos desnecessários e prejuízos com máquina parada. 


Fonte: Parker Hannifin

Marcadores

As Dez Mais Lidas...

Leia também...

AV1 - DESENHO TÉCNICO PROJETIVO [ATIVIDADE RESOLVIDA]

1) Na legenda de desenho técnicos são encontradas duas figuras que representam o método de projeção ortográfica e para a sua elaboração são ...