Mostrando postagens com marcador automação. Mostrar todas as postagens
Mostrando postagens com marcador automação. Mostrar todas as postagens

02/08/2010

PF apresenta Robô Antibomba

  • A Polícia Federal (PF) apresentou equipamentos do Grupo de Bombas e Explosivos que serão utilizados no esquema de segurança para a Copa do Mundo de 2014 e para os Jogos Olímpicos de 2016. Os dois eventos serão realizados no Brasil. Foram apresentadas três unidades antibomba equipadas com robô usado para a neutralização de artefatos explosivos, raio-x, traje anti-fragmentação e tenda de contenção. Cada unidade custou US$ 860 mil. A PF já possui três unidades e mais nove serão compradas até o inicio da Copa do Mundo de 2014.
  • O robô, acionado por controle remoto, é utilizado para remoção e desarticulação de bombas. Para desarticular a bomba e separar carga principal, fonte de energia e detonador do artefato, é efetuado um tiro com canhão de água. "É uma ferramenta de excelência para desarticular artefatos", disse o perito criminal da PF Adauto Zago."Cada uma das 12 cidade-sedes da Copa do Mundo terá uma unidade equipada com o que há de mais moderno na área da atividade antibomba. Podemos atender diversos tipos de situações com esse equipamento", afirmou Zago.
  • O diretor-geral da PF, Luiz Fernando Corrêa, disse que com a aquisição dos equipamentos a "capacidade instalada no estado brasileiro garantirá efetivamente a segurança nos grandes eventos". "Nós temos que ter capacidade para dar segurança aos cidadãos e quando tiver grandes eventos essa capacidade é aplicada", explicou Corrêa. Segundo ele, os novos equipamentos são um avanço em relação aos utilizados em 2007 nos Jogos Panamericanos. Fonte: G1

18/06/2010

Simulador Robótico Grátis


Este aplicativo é um simulador didático de manipuladores robóticos. O ambiente virtual do aplicativo foi programado usando a biblioteca gráfica OpenGL, e proporciona uma visualização tridimensional do cenário.

No aplicativo podem ser estudadas a cinemática e anatomia do manipulador, programar uma seqüência de operações e comandá-lo através de um joystick ou mouse, de forma interativa, a fim de facilitar o entendimento e incentivar o usuário iniciante no estudo da robótica.

Este software foi desenvolvido para ser leve podendo ser executado no sistema operacional Windows 98 ou superior.

Requisitos mínimos de hardware:

- Não requer instalação (Só descompactar o arquivo)

-Placa aceleradora de vídeo de 8MB

-64 MB de memória RAM

-Processador de 450 MHz

Apoio: PIBIC/CNPq e DEP/UFV

14/06/2010

Campeonato mundial de futebol de robôs

Estudantes de Porto Alegre (RS) e de São Paulo se preparam para mais uma edição do RoboCup 2010. O evento é uma espécie de Copa do Mundo dos robôs e se realiza de 19 a 25 deste mês, em Cingapura.

A competição é considerada a maior e mais importante plataforma de pesquisa em robótica do mundo e vai reunir mais de 400 equipes de 40 países.

Realizado há mais de 10 anos, o evento envolve a participação de robôs inteligentes de uma forma geral. Entre as modalidades estão as categorias: resgate, colaboração e ambiente de simulação.

Jogadores robóticos

Entre os brasileiros participantes, estão alunos da Universidade Federal do Rio Grande do Sul (UFRGS) e do Centro Universitário da Fundação Educacional Inaciana (FEI), de São Paulo.

As equipes brasileiras estão inscritas na categoria Small Size (que utiliza pequenos robôs de 15 cm de altura), também conhecida como F-180.

O grupo da FEI é formado por nove alunos dos cursos de graduação em Ciência da Computação, Engenharia Elétrica, Engenharia Mecânica, além de mestrandos.

Os universitários levam para a disputa sete robôs (cinco jogadores, sendo um goleiro, mais dois reservas). Cada jogador robô tem cinco motores e quatro rodas, além de quatro baterias de 7,4 volts.

Em 2009, a equipe da FEI ficou entre as 12 melhores colocadas no torneio realizado na Áustria. A expectativa é de ter desempenho superior nesta edição.

"São robôs automáticos que jogam sem a interferência humana, nós somos meros espectadores. É praticamente igual ao futebol que conhecemos, tendo a partida duração de dois tempos de cinco minutos. O juiz também é automático, neste caso uma pessoa apenas aperta os botões para indicar o que ocorreu", conta o coordenador do projeto Futebol de Robôs da FEI, Flávio Tonidandel.

Desenvolvimento da robótica no Brasil

De acordo com o instrutor da FEI, a participação no mundial trouxe como resultado o grande aprendizado. As competições serviram de motivação para os alunos e para estimular o desenvolvimento da robótica móvel no País, mediante avanços obtidos nas áreas de mecânica, eletrônica e inteligência artificial.

"É preciso trabalhar a parte de cooperação, movimentação e visão dos robôs. As equipes ainda trocam ideias, ciência e tecnologia. Lá fora, em nível de tecnologia, houve grande avanço e investimentos (em especial nos Estados Unidos e na Ásia) e nós também chegamos num nível que começamos a competir bem", avalia Tonidandel.

06/04/2010

Dúvidas no Projeto Experimental

Esta postagem surgiu de perguntas realizadas por Jon Éder, estudante de Automação Industrial visando aperfeiçoar o Projeto Experimental de Conclusão de Curso.


"O projeto experimental da minha equipe está relacionado ao processo de fabricação de biscoitos.
Um estudo de caso na Fundação de Apoio ao Menor de Feira de Santana (FAMFS).
E no meio do caminho apareceram algumas dúvidas..."


1. A movimentação de ingredientes nas duas tubulações (sólidos e líquido) pra os produtos cairem na bacia de mistura, é feita da seguinte forma?
Líquido (óleo vegetal): Abertura de válvula
Sólidos (mistura dos pós): Rosca sem fim no interior da linha


2. Tem algum problema utilizarmos o túnel de resfriamento que achamos por ele utilizar sistema de Amônia?


3. O controle de rotação das esteiras é feita apenas com o controle de rotação dos motores?


4. Em relação a motores, todo motor empregado nessas indústrias operam segundo a relação: baixa rotação - alto torque?


Vamos então às respostas:


1- Tanto as válvulas (controle de líquidos), quanto a rosca-sem-fim (controle de sólidos), deverão estar monitoradas por uma célula de carga (balança associada ao controle através do peso de cada um dos ingredientes da receita) que deverá estar instalada na bacia de mistura (reator).


2- O túnel de resfriamento pode ser utilizado sem problemas, pois apesar de ser amônia o fluido refrigerante, este não entra em contato com o produto a ser resfriado.


3- O controle da rotação das esteiras está no controle de rotação dos motores, que deverão ser monitorados por um encoder (transdutor de rotação para sistemas de automação encontrado também nos servomotores).


4- Quanto aos motores de acionamento, a relação RPM/TORQUE sempre será a mesma: alto torque baixo RPM e vice-versa. Para controlar a rotação pode ser utilizado um inversor de frequência.

11/02/2010

Motor de passo

*Esta postagem foi solicitada por uma leitora do Blog do Professor Carlão através do formulário de contatos. Participe também solicitando temas e postagens através dos comentários ou formulário de contatos. Pergunta: Gostaria de saber um pouco sobre a alimentaçao do motor de passo (Michele):


*O motor de passo é um tipo de motor elétrico que pode ser controlado por sinais digitais, tornando-o preciso e de recomendável utilização em aplicações que venham a requerer um ajuste fino de posicionamento.


*O motor de passo é um transdutor que converte energia elétrica em movimento controlado através de pulsos, o que possibilita o deslocamento por passo, onde passo é o menor deslocamento angular. Com o passar dos anos houve um aumento na popularidade deste motor, principalmente pelo seu tamanho e custo reduzidos e também a total adaptação por controle digitais. Outra vantagem do motor de passo em relação aos outros motores é a estabilidade. Quando quisermos obter uma rotação específica de um certo grau, calcularemos o número de rotação por pulsos o que nos possibilita uma boa precisão no movimento. Os antigos motores passavam do ponto e, para voltar, precisavam da realimentação negativa. Por não girar por passos a inércia destes é maior e assim são mais instáveis.


*Normalmente os motores de passo são projetados com enrolamento de estator polifásico o que não foge muito dos demais motores. O número de pólos é determinado pelo passo angular desejado por pulsos de entrada. Os motores de passo têm alimentação externa. Conforme os pulsos na entrada do circuito de alimentação, este oferece correntes aos enrolamentos certos para fornecer o deslocamento desejado.
Motores de passo unipolares são caracterizados por possuírem um center-tape entre o enrolamento de suas bobinas. Normalmente utiliza--se este center-tape para alimentar o motor, que é controlado aterrando-se as extremidades dos enrolamentos.


*Os motores bipolares exigem circuitos mais complexos. A grande vantagem em se usar os bipolares é prover maior torque, além de ter uma maior proporção entre tamanho e torque. Fisicamente os motores têm enrolamentos separados, sendo necessário uma polarização reversa durante a operação para o passo acontecer.
*Um motor de corrente contínua, quando alimentado, gira no mesmo sentido e com rotação constante, ou seja, para que estes motores funcionem, é necessário apenas estabelecer sua alimentação. Com o auxilio de circuitos externos de controle, estes motores de corrente contínua poderão inverter o sentido de rotação ou variar sua velocidade.


*Para que um motor de passo funcione, é necessário que sua alimentação seja feita de forma sequencial e repetida. Não basta apenas ligar os fios do motor de passo a uma fonte de energia e sim ligá-los a um circuito que execute a sequência requerida pelo motor.
*Existem três tipos básicos de movimentos o de passo inteiro e o de meio passo e o micropasso, tanto para o motor bipolar como para o unipolar. O de micropasso tem sua tecnologia não muito divulgada, e baseia-se no controle da corrente que flui por cada bobina multiplicado pelo numero de passos por revolução.


*A energização de uma e somente uma bobina de cada vez produz um pequeno deslocamento no rotor. Este deslocamento ocorre simplesmente pelo fato de o rotor ser magneticamente ativo e a energização das bobinas criar um campo magnético intenso que atua no sentido de se alinhar com as pás do rotor. Assim, polarizando de forma adequada os bobinas, podemos movimentar o rotor somente entre as bobinas (passo inteiro), ou entre as bobinas e alinhadas com as mesmas.


*Para que se obtenha uma rotação constante é necessário que a energização das bobinas seja periódica. Esta periodicidade é proporcionada por circuitos eletrônicos que controlam a velocidade e o sentido de rotação do motor. Por se tratar de sinais digitais, fica fácil compreender a versatilidade dos motores de passo. São motores que apresentam uma gama de rotação muito ampla que pode variar de zero até 7200 rpm; apresentam boa relação peso/potência; permitem a inversão de rotação em pleno funcionamento; alguns motores possuem precisão de 97%; possuem ótima frenagem do rotor e podem mover-se passo-a-passo. Mover o motor passo-a-passo resume-se ao seguinte: se um determinado motor de passo possuir 170 passos, isto significa que cada volta do eixo do motor é dividida 170 vezes, ou seja, cada passo corresponde a 2,1 graus e o rotor tem a capacidade para mover-se apenas estes 2,1 graus.


*Didaticamente falando, o sistema de controle se baseia em um circuito oscilador onde seria gerado um sinal cuja frequência estaria diretamente relacionado com a velocidade de rotação do motor de passo. Esta frequência seria facilmente alterada (seja por atuação em componentes passivos seja por meio eletrônico) dentro de um determinado valor assim, o motor apresentaria uma rotação mínima e uma máxima. A função "Freio" se daria simplesmente pela inibição do sinal gerado pelo oscilador. O próximo passo seria providenciar um circuito amplificador de saída, pois algumas aplicações exigem uma demanda de corrente relativamente elevada. Caberia ao circuito amplificador de saída fornecer estas correntes de forma segura, econômica e rápida. O circuito amplificador de saída seria constituído de transistores e/ou dispositivos de potência que drenam corrente em torno de 500 mA ou mais. Motores de passo geralmente suportam correntes acima de 1,5 Ampère. O amplificador de saída é o dispositivo mais solicitado em um projeto de controle de motor de passo. Devido às variações de trabalho a que pode ser submetido o motor de passo, um amplificador mal projetado pode limitar muito o conjunto como um todo. Um exemplo destas limitações pode ser facilmente entendido. Um motor de passo girando a altas rotações, repentinamente é solicitado a inverter sua rotação (como ocorre em máquinas CNC e cabeçotes de impressão). No momento da inversão as correntes envolvidas são muito altas e o circuito amplificador deve suportar tais drenagens de corrente. O torque do motor de passo depende da frequência aplicada a alimentação. Quanto maior a frequência, menor o torque, porque o rotor tem menos tempo para mover-se de um ângulo para outro.


*A faixa de partida deste motor é aquela na qual a posição da carga segue os pulsos sem perder passos, a faixa de giro é aquela na qual a velocidade da carga também segue a frequência dos pulsos, mas com uma diferença: não pode partir, parar ou inverter, independente do comando.


*Fonte: www.eletronica.org com adaptações.

23/01/2010

Nasa busca salvar robô em Marte

Robô atolado

O esforço da Nasa é para recuperar o movimento do robô explorador Spirit, atolado devido à perda de duas de suas seis rodas independentes.

Em meados deste mês, os engenheiros transmitiram ordens ao Spirit para conseguir um lento movimento de uma das rodas e os resultados foram insignificantes, informou o JPL, que controla suas operações.

Haverá outras tentativas, mas a possibilidade de manobras para recuperar seu movimento é cada vez mais curta devido à proximidade do inverno no hemisfério sul de Marte, quando os dias ficam mais curtos e se reduz a luz solar.

O Spirit chegou a Marte junto ao seu gêmeo Opportunity em janeiro de 2004, e deveria deixar de funcionar três meses depois, quando os painéis solares que lhe proporcionam energia ficassem cobertos pelo pó marciano, segundo previam os engenheiros do JPL.

Longevidade

No entanto, Spirit e Opportunity prolongaram amplamente seu prazo de vida e, cinco anos depois, continuavam transmitindo fotografias e dados sobre a estrutura geológica e a atmosfera do planeta vermelho.

Mas, desta vez, os inconvenientes parecem ser insuperáveis, admitiram os engenheiros do JPL.

"Existe a possibilidade muito real de que não possa sair do local" onde se encontra, admitiu no mês passado John Calas, diretor do projeto para Spirit e Opportunity.

O veículo ficou atolado em um lugar chamado Tróia, na Cratera Gusev. Além disso, uma tempestade de pó cobriu os painéis e reduziu a energia a ponto de deixar os sistemas trabalhando em um nível mínimo, disse o JPL.

Desde 2004, quando chegaram a extremos opostos do planeta, os dois veículos percorreram 21 quilômetros do agreste terreno marciano, superando as temperaturas extremas do planeta, que vão de 20 ºC a -100 ºC.

20/12/2009

Iniciação à Robótica Aula 7

O tipo mais comum de robô é o braço robótico, que geralmente é formado por sete segmentos de metal e unido por seis junções. O computador controla o robô através da rotação de um motor de passo conectado a cada junção (alguns braços maiores usam sistemas hidráulicos ou pneumáticos). Diferente dos motores comuns, os motores de passo se movem em incrementos exatos. Isso permite que o computador mova o braço com bastante precisão, repetindo o mesmo movimento várias vezes seguidas. O robô utiliza sensores de movimento para ter certeza de que se move corretamente.
Um robô industrial com seis junções lembra um braço humano. Ele tem o equivalente a um ombro, cotovelo e pulso. Geralmente, o ombro é montado em uma base estática em vez de um corpo móvel. Este tipo de robô tem seis graus de liberdade, o que significa que ele pode se mover em seis direções diferentes. Já um braço humano tem sete graus de liberdade.
A função do seu braço é mover a sua mão de um lugar para o outro. Similarmente, a função de um braço robótico é mover um atuador de um lugar para o outro. Você pode acoplar todo tipo de atuadores a um braço robótico. Cada atuador funciona para um tipo de trabalho. O atuador mais comum é uma versão simplificada de mão, que pode apanhar e carregar diferentes objetos. As mãos robóticas têm sensores de pressãoacoplados, que dizem ao computador a força com que o robô está segurando o objeto. Isso impede que o robô derrube ou quebre o que ele estiver carregando. Existem outros atuadores como soldas, brocas e sprays de pintura.
Os robôs industriais são criados para fazer a mesma coisa repetidamente, em um ambiente controlado. Por exemplo, o robô pode tampar os potes de geléia em uma linha de montagem. Para ensinar um robô como fazer o seu trabalho, o programador guia o braço dele através dos movimentos de um controle. O robô memoriza a seqüência exata de movimentos e os repete toda vez que uma nova unidade chega à linha de montagem.
A maioria dos robôs industriais trabalha em linhas de montagem de automóveis. Os robôs são mais precisos e podem fazer este trabalho de maneira muito mais eficaz que os homens. Eles sempre usam a broca no mesmo lugar e sempre apertam os parafusos com a mesma força, não importa quantas horas tenham trabalhado. Estes robôs também são muito importantes para a indústria da informática. É necessário uma mão extremamente precisa para montar um minúsculo chip de computador.
Fonte: Tom Harris. "HowStuffWorks - Como funcionam os robôs"

15/12/2009

Iniciação à Robótica Aula 6

  • Sensores são dispositivos com a finalidade de obter informações sobre o ambiente em que se encontram, e são utilizados como componentes do sistema de controle de realimentação do robô. Há diversos tipos de sensores que podem ser classificados de acordo com os princípios físicos sobre os quais eles estão baseados.
  • O sensor de posição determina as posições dos elos ou de elementos externos, informando ao sistema de controle que, então, executa as decisões apropriadas para o funcionamento. Um tipo de sensor de posição, por exemplo, é o “encoder” (foto) que tem como propriedade informar a posição por meio de contagem de pulsos. Neste caso, tem-se uma fonte de luz, um receptor e um disco perfurado, que irá modular a recepção da luz ao girar. Este disco está preso a uma junta, de forma a criar um movimento rotacional, enquanto que a fonte de luz e o receptor estão fixos. A rotação do disco cria uma série de pulsos pela interrupção ou não da luz recebida pelo detector. Estes pulsos de luz são transformados pelo detector em uma série de pulsos elétricos. Os “encoders” podem ser classificados em absoluto e incremental.
  • O sensor de toque fornece um sinal binário de saída que indica se houve ou não contato com o objeto. Um dos modelos mais simples é feito com duas chapas de metal que devem ser tocadas ao mesmo tempo pelos dedos de uma pessoa. A resistência dos dedos suficiente para acionar um circuito sensível.
  • O sensor de pressão é uma estrutura mecânica planejada a deformar-se dentro de certos limites. Um modelo simples deste tipo de sensor pode ser feito com material de esponja condutora, pois ela tem uma resistividade elevada que se altera quando deformada. Outro modelo mais sofisticado e versátil é o strain-gage, que é, na sua forma mais completa, um resistor elétrico composto de uma finíssima camada de material condutor. As tensões mecânicas são proporcionais as deformações medidas pelo sensor.

13/12/2009

Iniciação à Robótica Aula 5

  • Segundo a Robotic Industries Association (RIA), robô industrial é definido como um "manipulador multifuncional reprogramável projetado para movimentar materiais, partes, ferramentas ou peças especiais, através de diversos movimentos programados, para o desempenho de uma variedade de tarefas".
  • Uma definição mais completa é apresentada pela norma ISO (International Organization for Standardization) 10218, como sendo: "uma máquina manipuladora com vários graus de liberdade controlada automaticamente, reprogramável, multifuncional, que pode ter base fixa ou móvel para utilização em aplicações de automação industrial".

Um robô industrial é forma do pela integração dos seguintes componentes:

  • manipulador mecânico: refere-se principalmente ao aspecto mecânico e estrutural do robô. Consiste da combinação de elementos estruturais rígidos (corpos ou elos) conectados entre si através de articulações (juntas), sendo o primeiro corpo denominado base e o último extremidade terminal, onde será vinculado o componente efetuador (garra ou ferramenta).
  • atuadores: São componentes que convertem energia elétrica, hidráulica ou pneumática, em potência mecânica. Através dos sistemas de transmissão a potência mecânica gerada pelos atuadores é enviada aos elos para que os mesmos se movimentem: atuadores hidráulicos e pneumáticos ou atuadores eletromagnéticos:
  • sensores: Fornecem parâmetros sobre o comportamento do manipulador, geralmente em termos de posição e velocidade dos elos em função do tempo, e do modo de interação entre o robô e o ambiente operativo (força, torque, sistema de visão) à unidade de controle. As juntas utilizadas para vincular os elos de um robô são normalmente acopladas a sensores.
  • unidade de controle: Responsável pelo gerenciamento e monitoração dos parâmetros operacionais requeridos para realizar as tarefas do robô. Os comandos de movimentação enviados aos atuadores são originados de controladores de movimento (computador industrial, CLP, placa controladora de passo) e baseados em informações obtidas através de sensores.
  • unidade de potência: É responsável pe lo fornecimento de potência necessária à movimentação dos atuadores. A bomba hidráulica, o compressor e a fonte elétrica são as unidades de potência associadas aos atuadores hidráulico, pneumático e eletromagnético, respectivamente.
  • efetuador: É o elemento de ligação entre o robô e o meio que o cerca. Pode ser do tipo garra ou ferramenta. O principal escopo de uma garra é pegar um determinado objeto, transportá-lo a uma posição pré-estabelecida e após alcançar tal posição, soltá-lo. A ferramenta tem como função realizar uma ação ou trabalho sobre uma peça, sem necessariamente manipulá-la.

08/12/2009

Iniciação à Robótica Aula 4

CONFIGURAÇÃO DOS ROBÔS

Robô Cartesiano:

  • O robô de coordenadas cartesianas, utiliza três juntas lineares. É o robô de configuração mais simples, desloca as três juntas uma em relação à outra. Este robô opera dentro de um envoltório de trabalho cúbico.

Robô cilíndrico

  • Este braço possui na base uma junta prismática, sobre a qual apóia-se uma junta rotativa (torcional). Uma terceira junta do tipo prismática é conectada na junta rotativa. Este braço apresenta um volume de trabalho cilíndrico.

Robô esférico ou polar

  • Este tipo de braço robótico foi projetado para suportar grandes cargas e ter grande alcance. É bastante utilizado para carga e descarga de máquinas, embora o braço revoluto seja mais comum nestas aplicações. Ele conta com duas juntas rotativas seguida de uma junta prismática. A primeira junta move o braço ao redor de um eixo vertical, enquanto que a segunda junta gira o conjunto ao redor de um eixo horizontal. O volume de trabalho é um setor esférico, de onde este manipulador obteve seu nome. A denominação “polar” deve-se as coordenadas polares de sistemas de eixos cartesianos, caracterizadas por duas coordenadas angulares (juntas rotativas) e uma coordenada radial (junta prismática).

Robô SCARA

  • Este é também um braço bastante utilizado, pois é compacto, tem grande precisão e repetibilidade, embora com um alcance limitado. Estas características o tornam próprios para trabalhos em montagem mecânica ou eletrônica que exigem alta precisão. Possui duas juntas rotativas e uma junta linear, que atua sempre na vertical. O volume de trabalho deste braço é cilíndrico, porém, como utiliza juntas rotativas, é também considerado articulado. O nome e um acrônimo de Selective Compliance Assembly Robot Arm, ou Braço Robótico de Montagem com Complacência Seletiva.

Robô articulado ou revoluto

  • Estes tipos de robôs possuem 3 juntas rotativas. Eles são os mais utilizados nas indústrias, por terem uma configuração semelhante ao do braço humano, (braço, antebraço e pulso). O pulso é unido a extremidade do antebraço, o que propícia juntas adicionais para orientação do órgão terminal. Este modelo de configuração é o mais versátil dos manipuladores, pois assegura maiores movimentos dentro de um espaço compacto. Os braços revolutos podem ser de dois tipos: cadeia aberta ou cadeia parcialmente fechada. Nos primeiros pode-se distinguir facilmente a sequência natural formada por elo-junta, da base até o punho. Nos braços de cadeia parcialmente fechada o atuador da terceira junta efetua o movimento desta por meio de elos e articulações não motorizadas adicionais.

Robô paralelo

  • Estes tipos de manipuladores possuem juntas que transformam movimentos de rotação em translação, ou usam diretamente juntas prismáticas. Sua principal característica é um volume de trabalho reduzido, porém uma alta velocidade, o que o torna propício para certas atividades de montagem. Outra característica destes braços é que eles não possuem cinemática com cadeia aberta, como a maioria dos robôs industriais. Os quatro ou seis atuadores destes braços unem a base diretamente ao punho.

28/11/2009

Iniciação à Robótica Aula 3

Os graus de liberdade (GL) determinam os movimentos do braço robótico no espaço bidimensional ou tridimensional. Cada junta define um ou dois graus de liberdade, e, assim, o numero de graus de liberdade do robô é igual a somatória dos graus de liberdade de suas juntas. Por exemplo, quando o movimento relativo ocorre em um único eixo, a junta tem um grau de liberdade; caso o movimento se dê em mais de um eixo, a junta tem dois graus de liberdade. Observa-se que quanto maior a quantidade de graus de liberdade, mais complicadas são a cinemática, a dinâmica e o controle do manipulador. O número de graus de liberdade de um manipulador esta associado ao numero de variáveis posicionais independentes que permitem definir a posição de todas as partes do robô.
Os movimentos robóticos podem ser separados em movimentos do braço e do punho. Em geral os braços são dotados de 3 acionadores e uma configuração 3GL, numa configuração que permita que o orgão terminal alcance um ponto qualquer dentro de um espaço limitado ao redor do braço. Pode-se identificar 3 movimentos independentes num braço qualquer:
  • Vertical transversal – movimento vertical do punho para cima ou para baixo
  • Rotacional transversal – movimento do punho horizontalmente para a esquerda ou para a direita.
  • Radial transversal – movimento de aproximação ou afastamento do punho
Os punhos são compostos de 2 ou 3 graus de liberdade. As juntas dos punhos são agrupadas num pequeno volume de forma a não movimentar o orgão terminal em demasia ao serem acionadas. Em particular, o movimento do punho possui nomenclaturas especificas, conforme descritas a seguir:
  • Roll ou rolamento - rotação do punho em torno do braço
  • Pitch ou arfagem - rotação do punho para cima ou para baixo
  • Yaw ou guinada - rotação do punho para a esquerda e para a direita.
  • Braços de robôs são frequentemente descritos como tendo um certo número de graus de liberdade ou um certo número de eixos de movimento. Em robótica , o número de graus de liberdade é o número de movimentos distintos que o braço pode realizar.
  • Normalmente o número de graus de liberdade iguala-se ao número de juntas, de forma que um robô de cinco graus de liberdade possui cinco juntas, e um robô com seis eixos tem seis juntas. A noção de graus de liberdade tem limites definidos.
  • Por exemplo, uma junta não possui apenas uma direção de movimento, mas também limites a este movimento. Essa faixa de movimento permitido, que não tem nada a ver diretamente com graus de liberdade, é muito importante. Por exemplo, quando seguramos uma bola de tênis na mão, a seguramos mantendo a palma da mão em contato com ela. Isto ocorre porque as juntas de nossos dedos só dobram na direção da palma da mão e não em direção às costas desta.
  • Caso nossas juntas tivessem uma faixa de movimento que lhes permitisse dobrar nas duas direções, seríamos capazes de pegar uma bola de tênis tanto com a palma como com as costas da mão. Assim, usamos os graus de liberdade adicionais das juntas de nossos punhos, cotovelo e ombro para mover nossa mão de tal forma que a palma fique de frente para a bola.
  • Portanto ter mais juntas (punho, cotovelo e ombro) e em consequência mais graus de liberdade, ajuda-nos a compensar o fato de ter uma faixa de movimentos um tanto limitada em nossos dedos.

18/11/2009

Iniciação à Robótica Aula 2

O braço robótico é composto pelo braço e pulso. O braço consiste de elementos denominados elos unidos por juntas de movimento relativo, onde são acoplados os acionadores para realizarem estes movimentos individualmente, dotados de capacidade sensorial, e instruídos por um sistema de controle. O braço e fixado a base por um lado e ao punho pelo outro. O punho consiste de varias juntas próximas entre si, que permitem a orientação do orgão terminal nas posições que correspondem a tarefa a ser realizada. Na extremidade do punho existe um orgão terminal (mão ou ferramenta) destinada a realizar a tarefa exigida pela aplicação.

A junta pode ser rotativa, prismática, cilíndrica, esférica, parafuso e planar.

  • A junta prismática ou linear: Move em linha reta. São compostas de duas hastes que deslizam entre si;
  • A junta rotacional: Gira em torno de uma linha imaginaria estacionaria chamada de eixo de rotação. Ela gira como uma cadeira giratória e abrem e fecham como uma dobradiça;
  • A junta esférica: Funciona com a combinação de três juntas de rotação, realizando a rotação em torno de três eixos;
  • A junta cilíndrica: É composta por duas juntas, uma rotacional e uma prismática;
  • A junta planar: É composta por duas juntas prismáticas, realiza movimentos em duas direções;
  • A junta parafuso: É constituída de um parafuso que contém uma porca ao qual executa um movimento semelhante ao da junta prismática, porém, com movimento no eixo central (movimento do parafuso).

13/11/2009

Iniciação à Robótica Aula 1


  • O precursor do termo robô foi o escritor Karel Capek, que usou pela primeira vez em 1920, a palavra “robota” que significa "servo" (serviço compulsório, atividade forçada) originando a palavra “robot” em inglês e traduzido para o português como “robô”.
  • Com o surgimento dos computadores na metade do século, iniciaram-se especulações em termos da capacidade de um robô pensar e agir como um ser humano.
  • No entanto, os robôs foram, neste período, criados especialmente para executarem tarefas difíceis, perigosas e impossíveis para um ser humano. Por outro lado, eles não eram projetados com a capacidade de criar ou executar processos que não lhes foram ensinados ou programados.
  • Assim sendo, foram as indústrias que mais se beneficiaram com o desenvolvimento da robótica, aumentando a produção e eliminando tarefas perigosas, antes executadas por seres humanos.
  • Na robótica, existem pesquisas e desenvolvimentos de robôs intitulados humanóides ou antropomórficos. Estes são criados com a semelhança humana e com capacidade de interagir com o ambiente, como o Asimo construído pela montadora japonesa Honda Motor Co.
  • A automação é uma tecnologia que faz uso de sistemas mecânicos, elétricos, eletrônicos e de computação para efetuar controle de processos produtivos.
  • Na automação fixa as máquinas são específicas para o produto a ser produzido. Elas produzem grande quantidade um único produto, ou produtos com pequenas variações entre eles. O volume de produção é elevado, e o custo da maquina é elevado, pois e projetada para um produto especifico. Por outro lado, como o volume de produção é alto, o custo do produto em geral é baixo.
  • Na automação flexível o volume de produção é médio e geralmente a maquina pode ser programada para produzir um outro produto, ainda que semelhante. Esta automação possui características da automação fixa e da programável. A máquina deve ser adaptável a um numero grande de produtos similares, e, neste sentido, ela é mais flexível que a automação fixa.
  • Na automação programável o volume de produção é baixo, mas a variedade de produtos diferentes é alta. Ela é adaptável por meio de programação. Os principais exemplos de automação programável são as maquinas CNC e os robôs industriais.

09/08/2009

AUTOMAÇÃO INDUSTRIAL

Assista aqui esta vídeo aula de Automação Industrial: Nesta aula você compreenderá como os processos industriais estão sendo controlados e monitorados visando melhorar a produtividade das máquinas e agregar confiabilidade ao processo.

04/08/2009

CONCURSO FAFEN PETROBRAS - AULA 2

Esta aula aborda o funcionamento do CLP: O Controlador Lógico Programável é tema da área de Eletrônica, Instrumentação e Automação. Portanto é importante para os que vão concorrer aos cargos da área técnica e operacional. Como por exemplo: Técnico de Operação, Técnico de Instrumentação e Técnico de Manutenção Elétrica. Acompanhe...

03/08/2009

CONCURSO FAFEN PETROBRAS - AULA 1

Aula de Eletrônica: Acompanhe aqui esta aula de Eletrônica (Conhecimentos Específicos), que está no Edital Oficial do Concurso Fafen Petrobras para os Cargos de Técnico em Instrumentação, Técnico de Manutenção Elétrica e Técnico em Operação. Compre sua Apostila Completa em CD-ROM.

31/07/2009

INJEÇÃO ELETRÔNICA DIRETA

Injeção Eletrônica Direta: Observe detalhadamente os quatro tempos do motor de combustão Ciclo Otto. O combustível pulverizado (já em forma gasosa) está representado pela cor verde. Ao misturar-se com o ar aspirado na admissão e ser comprimido, resulta na combustão. Ou seja, energia térmica transformada em energia mecânica. Comente!

23/07/2009

TERMOSTATO

O termostato é uma chave comandada pela temperatura. Uma chave elétrica muda os estados dos seus contatos quando a temperatura atinge determinados valores críticos. Por exemplo, por economia e segurança, um condicionador de ar deve ser desligado quando a temperatura do ambiente atingir um valor alto determinado e deve ser religado quando a temperatura atingir um valor baixo determinado. Ajustes convenientes no termostato permitem que o condicionador opere entre estes dois valores críticos de temperatura. O termostato é um modo simples e barato de executar o controle liga-desliga de processos envolvendo temperatura. O termostato também pode servir de proteção de um sistema de controle de temperatura. Um controlador convencional fornece uma temperatura constante, dentro da banda proporcional. Quando, por algum problema do controlador ou do sistema, o controlador perde o controle e a temperatura tende para valores perigosos de muito baixa ou muito alta temperatura, o pressostato desliga o sistema.

20/07/2009

VARIÁVEIS DE CONTROLE

Para controlar um processo o CLP usa informações vindas de sensores. Através das instruções gravadas em sua memória interna ela comanda os atuadores, que exercem o trabalho sobre o sistema. Conceitualmente designa-se o sensores de entradas e os atuadores de saídas, sendo que ambas podem ser representadas matematicamente por variáveis. Em automação, estas podem ser dividias em analógicas e digitais. As variáveis analógicas são aquelas que variam continuamente com o tempo. Elas são comumente encontradas em processos químicos advindas de sensores de pressão, temperatura e outras variáveis físicas. As variáveis discretas, ou digitais, são aquelas que variam discretamente com o tempo.

14/07/2009

IHM: INTERFACE HOMEM-MÁQUINA

Interface Homem-Máquina é um equipamento que possibilita ao operador a monitoração e interação com a máquina ou processo industrial. Através de um display de texto ou tela gráfica, a IHM cumpre a função de apresentar de forma inteligível o status de sinais de sensores e atuadores, válvulas, motores, valores de variáveis de processo, alarmes e indicações de falhas. Através de um teclado ou tela sensível ao toque (touch screen) possibilita de forma interativa a realização de comandos, acionamento de atuadores, alterações de Set Points (valores ideais determinados pelo operador), mudança de manual para automático e definição de limites de funcionamento.

As Dez Mais Lidas...

Leia também...

Um sistema linear consiste em um conjunto de equações lineares que compartilham as mesmas variáveis. Não há restrição quanto ao número de eq...