Mostrando postagens com marcador eletricidade. Mostrar todas as postagens
Mostrando postagens com marcador eletricidade. Mostrar todas as postagens

26/09/2012

Componentes dos Sistemas Hidráulicos




Componentes dos Sistemas Hidráulicos:

  • Grupos de Acionamento
  • Grupos de Comando e Controle
  • Grupos de Atuação

  • Geradores: Bombas de deslocamento (engrenagens, palhetas, lóbulos, etc.);
  • Distribuidores: válvulas direcionais, válvulas de pressão, válvulas de bloqueio etc.
  • Consumidores: cilindros lineares, motores, cilindros rotativos etc.

Vantagens:
  • Fácil instalação;
  • Rápida e suave inversão de movimentos;
  • Pode ser iniciado em plena carga;
  • Precisão no posicionamento e velocidade;
  • Sistemas auto lubrificados;
  • Pequena relação peso/potência;
  • Pequena relação tamanho/potência;
  • Proteção simples contra sobrecarga.


Funções do Fluido Hidráulico:
  • Transmitir pressão;
  • Lubrificar as partes móveis;
  • Proteger contra oxidação;
  • Eliminar calor;
  • Remover partículas metálicas.

Tipos de Fluidos Hidráulicos:
  • Óleo mineral;
  • Fluídos resistentes ao fogo: • Emulsão de óleo (1 a 40%) em água; • Emulsão de água (40%) em óleo; Aditivos: • Fluído sintético.
  • Inibidor de oxidação: reduz a reação do óleo com o oxigênio.
  • Inibidor de corrosão: forma um filme sobre os metais que neutraliza material corrosivo ácido.
  • Extrema pressão (antidesgaste): para aplicações de alta temperatura e alta pressão.
  • Antiespumante: une pequenas bolhas de ar que se desprendem e estouram.

19/07/2012

Bateria recarregável em menos de três minutos

Cientistas da Universidade de Stanford estão desenvolvendo uma bateria que deve substituir a velha bateria de níquel-ferro criada por Thomas Edison no começo do século XX. Esta bateria pode ser recarregada em apenas dois minutos e meio, e ser usada futuramente na indústria automobilística.
A equipe de cientistas, liderada pelo químico Hongjie Dai, mantiveram a mesma base de níquel e ferro para os eletrodos. A diferença está na inclusão de nanotubos feitos de carbono e grafeno.

Esses nanotubos de apenas um átomo de espessura permitem que as cargas elétricas se desloquem rapidamente entre os eletrodos e no circuito externo, resultando numa versão ultra rápida da antiga bateria de níquel-ferro. Segundo Dai, "essa nova bateria pode não ser capaz de mover sozinha um carro elétrico pela densidade de energia insuficiente para esse uso". No entanto, pode auxiliar as baterias de íons de lítio de veículos elétricos, que tem alta densidade de energia, mas demoram horas para recarregar.  

Até o momento, o laboratório de Dai fabricou apenas um pequeno protótipo capaz de alimentar uma lanterna. Contudo, o aparato tem uma densidade energética mil vezes superior à versão de Edison. As novas baterias de níquel-ferro dariam uma potência a mais na aceleração e seriam rapidamente recarregadas por sistemas que recuperam a energia da frenagem, já existentes em veículos elétricos.



Nova bateria: dois minutos e meio para recarregar

Fonte:  Motor Clube [Revista Veja], com adaptações.

28/05/2012

Crescem as vendas de Bicicletas Elétricas

A China é uma nação famosa por investir em bicicletas como meio de transporte de massa. Além das tradicionais bikes, os modelos movidos a energia elétrica e scooters estão tomando o mercado com toda a força. 

Segundo estimativa da Pike Research, as vendas de bicicletas elétricas alcançarão em 2018 o número de 47 milhões de unidades no continente asiático, sendo 42 milhões só na China. A previsão para veículos elétricos de duas rodas em geral é ainda mais animadora, com a possibilidade de entrada de 45 milhões de unidades no próximo ano e 65 milhões em 2018 em todo o continente.



Os veículos elétricos de duas rodas são mais sustentáveis e econômicos. Os que dependem de combustíveis não-renováveis, como o petróleo, liberam gases que poluem o ar, causam doenças respiratórias e agredirem o meio ambiente.

A bike elétrica está em processo de popularização no Brasil, principalmente nos grandes centros, e pode ser adquirida no Greenstore, do Greenvana.

03/03/2012

Proposta prevê Acervo Técnico do CREA no Currículo Lattes

Reunidos em Sessão Plenária Extraordinária, os conselheiros federais de Engenharia e Agronomia aprovaram no dia 14 de fevereiro a proposta do 7º Congresso Nacional de Profissionais, ocorrido em 2010. O texto pleiteia que o Acervo Técnico Profissional seja um dos critérios para ingresso e promoção na carreira de docência.

A proposta prevê que o acervo técnico emitido pelo Crea seja inserido no Currículo Lattes* do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). A Decisão Plenária criada a partir da aprovação da deliberação determina que o Confea articule com o CNPq um acordo de cooperação (ou “outro instrumento pertinente”) para a execução da proposta. “A proposta traz a aproximação da academia com o mercado de trabalho e com o exercício profissional, além de se formar profissionais adequados à demanda e sensíveis à importância da inovação no exercício da Agronomia, Engenharia, Geografia, Geologia e Meteorologia”, descreve e justificativa.

O Congresso Nacional de Profissionais é um processo de mobilização da classe profissional que, trienal, tem cerca de um ano de duração. Inicia-se, no primeiro semestre, com os congressos municipais, regionais e, no meio do ano, com os Congressos Estaduais de Profissionais. Propostas vindas de profissionais e acadêmicos de todas as regiões do país são filtradas e compiladas. Sistematizadas, as propostas são votadas em nível nacional em duas rodadas de debates que ocorrem no segundo semestre do ano.

*Currículo Lattes é o currículo profissional da área da educação utilizado por universidades, institutos, centros de pesquisa e fundações de amparo à pesquisa, como instrumento para avaliação de produtividade profissional e científica de pesquisadores, professores e alunos . Foi lançado em agosto de 1999 pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, agência vinculada ao Ministério da Ciência e Tecnologia – MCT.

Fonte: Acom/Confea

16/10/2011

O que é Condutância Elétrica?

A condutância é a propriedade que um corpo apresenta em relação à passagem da corrente elétrica. É o inverso da resistência elétrica (propriedade que um material apresenta para dificultar a passagem de corrente elétrica). Portanto, podemos concluir que:
  • quanto maior a resistência elétrica, menor é a condutância e
  • quanto menor a resistência elétrica, maior é a condutância.
Os materiais isolantes ou dielétricos têm uma resistência elétrica elevada e por isso uma condutância reduzida ou mesmo nula. Contrariamente, os materiais com condutância elevada são os que deixam circular melhor a corrente, tendo por isso uma resistência menor. Nas fórmulas matemáticas, a grandeza condutância é representada pela letra G. No sistema Internacional (S.I.), a unidade com que a condutância é medida chama-se siemens e representa-se pela letra [S]. 

Como exemplo, podemos escrever:
Condutância de 2200 siemens  G = 2200S.
Para calcular a condutância de um determinado condutor, temos que saber o valor da sua resistência. Assim, e sabendo que a condutância é o inverso da resistência, chegamos à seguinte fórmula:
Se tivermos por exemplo, um condutor em que a resistência seja igual a 10Ω, substituímos o R de resistência por 10Ω e obtemos o seguinte cálculo:

Com este cálculo concluímos que um condutor com uma resistência de 10Ω, tem uma condutância de 0,1 siemens. O instrumento para ensaios de condutância é o condutivímetro.


Condutivímetro

15/07/2011

A Instrumentação nos Processos Industriais

Nas indústrias de processo, tais como: química, petroquímica, siderúrgica, alimentícia, cimento, têxtil, papel, etc, a Instrumentação se faz presente, tirando rendimento máximo dos processos, fazendo com que toda energia cedida, seja transformada em trabalho na elaboração do produto desejado.
Do ponto de vista de controle, o processo é identificado como tendo uma ou mais variáveis associadas e que são importantes o suficiente para que seus valores sejam conhecidos e controlados pela malha de instrumentos. O processo é considerado como qualquer operação ou serie de operações que produza um resultado final desejado. Sob o ponto de vista do tempo e do tipo de operação envolvida, o processo pode ser classificado em:

- contínuo: a matéria-prima entra num lado do sistema e o produto sai do outro lado continuamente.
- batelada: uma dada quantidade de material é processada através de passos unitários, cada passo sendo completado antes de passar para o seguinte.
- manufatura: cada item a ser fabricado é processado em uma etapa como um item separado e individual.  


As grandezas que traduzem transferência de energia no processo podem ser: pressão, nível, vazão, temperatura, densidade, velocidade, viscosidade, peso, etc. as quais denominamos de variáveis de processo ( Qualquer quantidade física que possui valor alterável no tempo). As variáveis podem ser classificadas em:

- controlada: tipicamente, é a variável escolhida para representar o estado dos sistema. É o parâmetro que indica a qualidade do produto ou as condições de operação do processo. É aquela que se deseja manter constante, porque há influência de outras variáveis tendendo a modificar seu valor. A variável controlada determina o tipo e o tag da malha de controle.

- medida: é a que determina o tipo de elemento sensor. As variáveis são medidas para fins de indicação, registro, alarme, totalização e controle.

- manipulada: é aquela escolhida para controlar o estado do sistema. É atuada pelo controlador para alterar o valor da variável controlada. A variável manipulada determina o tipo de elemento final de controle.

Além das variáveis citadas, de interesse direto para o controle de processos, existem outras variáveis que afetam o desempenho do processo e, podem ser chamadas distúrbios. Como seu controle direto é muito difícil, deve-se aprender a conviver com elas e ajustar o sistema para compensar convenientemente sua influencia.

11/08/2010

Energia Elétrica

  • A energia elétrica que alimenta as indústrias, comércio e nossos lares é gerada principalmente em usinas hidrelétricas, onde a passagem da água por turbinas geradoras transformam a energia mecânica, originada pela queda d’agua, em energia elétrica. No Brasil a geração de energia elétrica é 80% produzida a partir de hidrelétricas, 11% por termoelétricas e o restante por outros processos. 
  • A partir da usina a energia é transformada, em subestações elétricas, e elevada a níveis de tensão (69/88/138/240/440 kV) e transportada em corrente alternada (60 Hertz) através de cabos elétricos, até as subestações rebaixadoras, delimitando a fase de Transmissão. 
  • Já na fase de Distribuição (11,9 / 13,8 / 23 kV), nas proximidades dos centros de consumo, a energia elétrica é tratada nas subestações, com seu nível de tensão rebaixado e sua qualidade controlada, sendo transportada por redes elétricas aéreas ou subterrâneas, constituídas por estruturas (postes, torres, dutos subterrâneos e seus acessórios), cabos elétricos e transformadores para novos rebaixamentos (110 / 127 / 220 / 380 V), e finalmente entregue aos clientes industriais, comerciais, de serviços e residenciais em níveis de tensão variáveis, de acordo com a capacidade de consumo instalada de cada cliente. 
  • Quando falamos em setor elétrico, referimo-nos normalmente ao Sistema Elétrico de Potência (SEP), definido como o conjunto de todas as instalações e equipamentos destinados à geração, transmissão e distribuição de energia elétrica até a medição inclusive. Com o objetivo de uniformizar o entendimento é importante informar que o SEP trabalha com vários níveis de tensão, classificadas em alta e baixa tensão e normalmente com corrente elétrica alternada (60 Hz). 
  • Conforme definição dada pela ABNT através das NBR (Normas Brasileiras Regulamentadoras), considera-se “baixa tensão”, a tensão superior a 50 volts em corrente alternada ou 120 volts em corrente contínua e igual ou inferior a 1000 volts em corrente alternada ou 1500 volts em corrente contínua, entre fases ou entre fase e terra. Da mesma forma considera-se “alta tensão”, a tensão superior a 1000 volts em corrente alternada ou 1500 volts em corrente contínua, entre fases ou entre fase e terra.

11/02/2010

Motor de passo

*Esta postagem foi solicitada por uma leitora do Blog do Professor Carlão através do formulário de contatos. Participe também solicitando temas e postagens através dos comentários ou formulário de contatos. Pergunta: Gostaria de saber um pouco sobre a alimentaçao do motor de passo (Michele):


*O motor de passo é um tipo de motor elétrico que pode ser controlado por sinais digitais, tornando-o preciso e de recomendável utilização em aplicações que venham a requerer um ajuste fino de posicionamento.


*O motor de passo é um transdutor que converte energia elétrica em movimento controlado através de pulsos, o que possibilita o deslocamento por passo, onde passo é o menor deslocamento angular. Com o passar dos anos houve um aumento na popularidade deste motor, principalmente pelo seu tamanho e custo reduzidos e também a total adaptação por controle digitais. Outra vantagem do motor de passo em relação aos outros motores é a estabilidade. Quando quisermos obter uma rotação específica de um certo grau, calcularemos o número de rotação por pulsos o que nos possibilita uma boa precisão no movimento. Os antigos motores passavam do ponto e, para voltar, precisavam da realimentação negativa. Por não girar por passos a inércia destes é maior e assim são mais instáveis.


*Normalmente os motores de passo são projetados com enrolamento de estator polifásico o que não foge muito dos demais motores. O número de pólos é determinado pelo passo angular desejado por pulsos de entrada. Os motores de passo têm alimentação externa. Conforme os pulsos na entrada do circuito de alimentação, este oferece correntes aos enrolamentos certos para fornecer o deslocamento desejado.
Motores de passo unipolares são caracterizados por possuírem um center-tape entre o enrolamento de suas bobinas. Normalmente utiliza--se este center-tape para alimentar o motor, que é controlado aterrando-se as extremidades dos enrolamentos.


*Os motores bipolares exigem circuitos mais complexos. A grande vantagem em se usar os bipolares é prover maior torque, além de ter uma maior proporção entre tamanho e torque. Fisicamente os motores têm enrolamentos separados, sendo necessário uma polarização reversa durante a operação para o passo acontecer.
*Um motor de corrente contínua, quando alimentado, gira no mesmo sentido e com rotação constante, ou seja, para que estes motores funcionem, é necessário apenas estabelecer sua alimentação. Com o auxilio de circuitos externos de controle, estes motores de corrente contínua poderão inverter o sentido de rotação ou variar sua velocidade.


*Para que um motor de passo funcione, é necessário que sua alimentação seja feita de forma sequencial e repetida. Não basta apenas ligar os fios do motor de passo a uma fonte de energia e sim ligá-los a um circuito que execute a sequência requerida pelo motor.
*Existem três tipos básicos de movimentos o de passo inteiro e o de meio passo e o micropasso, tanto para o motor bipolar como para o unipolar. O de micropasso tem sua tecnologia não muito divulgada, e baseia-se no controle da corrente que flui por cada bobina multiplicado pelo numero de passos por revolução.


*A energização de uma e somente uma bobina de cada vez produz um pequeno deslocamento no rotor. Este deslocamento ocorre simplesmente pelo fato de o rotor ser magneticamente ativo e a energização das bobinas criar um campo magnético intenso que atua no sentido de se alinhar com as pás do rotor. Assim, polarizando de forma adequada os bobinas, podemos movimentar o rotor somente entre as bobinas (passo inteiro), ou entre as bobinas e alinhadas com as mesmas.


*Para que se obtenha uma rotação constante é necessário que a energização das bobinas seja periódica. Esta periodicidade é proporcionada por circuitos eletrônicos que controlam a velocidade e o sentido de rotação do motor. Por se tratar de sinais digitais, fica fácil compreender a versatilidade dos motores de passo. São motores que apresentam uma gama de rotação muito ampla que pode variar de zero até 7200 rpm; apresentam boa relação peso/potência; permitem a inversão de rotação em pleno funcionamento; alguns motores possuem precisão de 97%; possuem ótima frenagem do rotor e podem mover-se passo-a-passo. Mover o motor passo-a-passo resume-se ao seguinte: se um determinado motor de passo possuir 170 passos, isto significa que cada volta do eixo do motor é dividida 170 vezes, ou seja, cada passo corresponde a 2,1 graus e o rotor tem a capacidade para mover-se apenas estes 2,1 graus.


*Didaticamente falando, o sistema de controle se baseia em um circuito oscilador onde seria gerado um sinal cuja frequência estaria diretamente relacionado com a velocidade de rotação do motor de passo. Esta frequência seria facilmente alterada (seja por atuação em componentes passivos seja por meio eletrônico) dentro de um determinado valor assim, o motor apresentaria uma rotação mínima e uma máxima. A função "Freio" se daria simplesmente pela inibição do sinal gerado pelo oscilador. O próximo passo seria providenciar um circuito amplificador de saída, pois algumas aplicações exigem uma demanda de corrente relativamente elevada. Caberia ao circuito amplificador de saída fornecer estas correntes de forma segura, econômica e rápida. O circuito amplificador de saída seria constituído de transistores e/ou dispositivos de potência que drenam corrente em torno de 500 mA ou mais. Motores de passo geralmente suportam correntes acima de 1,5 Ampère. O amplificador de saída é o dispositivo mais solicitado em um projeto de controle de motor de passo. Devido às variações de trabalho a que pode ser submetido o motor de passo, um amplificador mal projetado pode limitar muito o conjunto como um todo. Um exemplo destas limitações pode ser facilmente entendido. Um motor de passo girando a altas rotações, repentinamente é solicitado a inverter sua rotação (como ocorre em máquinas CNC e cabeçotes de impressão). No momento da inversão as correntes envolvidas são muito altas e o circuito amplificador deve suportar tais drenagens de corrente. O torque do motor de passo depende da frequência aplicada a alimentação. Quanto maior a frequência, menor o torque, porque o rotor tem menos tempo para mover-se de um ângulo para outro.


*A faixa de partida deste motor é aquela na qual a posição da carga segue os pulsos sem perder passos, a faixa de giro é aquela na qual a velocidade da carga também segue a frequência dos pulsos, mas com uma diferença: não pode partir, parar ou inverter, independente do comando.


*Fonte: www.eletronica.org com adaptações.

04/01/2010

Aniversário de Isaac Newton

Isaac Newton nasceu em Londres, em 4 de janeiro de 1643, e viveu até o ano de 1727. Cientista, químico, físico, mecânico e matemático, trabalhou junto com Leibniz na elaboração do cálculo infinitesimal. Durante sua trajetória, ele descobriu várias leis da física, entre elas, a lei da gravidade.


Foi um dos principais precursores do Iluminismo, criou o binômio de Newton, e, fez ainda, outras descobertas importantes para a ciência. Quatro de suas principais descobertas foram realizadas em sua casa, isto ocorreu no ano de 1665, período em que a Universidade de Cambridge foi obrigada a fechar suas portas por causa da peste que se alastrava por toda a Europa. Na fazenda onde morava, o jovem e brilhante estudante realizou descobertas que mudaram o rumo da ciência: o teorema binomial, o cálculo, a lei da gravitação e a natureza das cores.

Newton sempre esteve envolvido com questões filosóficas, religiosas e teológicas e também com a alquimia e suas obras mostravam claramente seu conhecimento a respeito destes assuntos. Devido a sua modéstia, não foi fácil convencê-lo a escrever o livro Principia, considerado uma das obras científicas mais importantes do mundo.

Newton tinha um temperamento tranquilo e era uma pessoa bastante modesta. Ele se dedicava muito ao seu trabalho e muitas vezes deixava até de se alimentar e também de dormir por causa disso. Além de todas as descobertas que ele fez, acredita-se que ocorreram muitas outras que não foram anotadas.


05/12/2009

Refrigeração Aula 4 - 2009


  • O sistema de refrigeração pelo método de compressão baseia-se na utilização do calor absorvido por um corpo, durante sua mudança de estado físico. Queremos deixar claro que não falamos do calor que absorve um corpo sólido quando ele se transforma em líquido e sim, no calor que retira um líquido quando vira vapor.
  • Estes sistemas de refrigeração usam produtos químicos chamados “fluidos refrigerantes” e a sua condição fundamental é que seu ponto de ebulição é muito inferior à temperatura ambiente, cerca de 30º C negativos.
  • O sistema de compressão é o mais utilizado nos dias de hoje e sua vantagem principal é que o líquido, depois da sua vaporização, é recuperado, pois a circulação é feita no interior de um circuito fechado.
  • O fluido refrigerante encontra-se no interior do evaporador e retira o calor do local onde ele se encontra e muda seu estado de líquido para vapor. Esses vapores são aspirados pelo compressor e fornecidos, sob pressão, para o condensador.
  • Neste componente, ele vira líquido novamente e perde o calor que absorveu. Desta forma, o calor que os alimentos ou objetos tinham e que estavam localizados perto do evaporador, e o calor gerado pela compressão, são descarregados ao meio ambiente.
  • O fluido refrigerante necessário no interior do evaporador é fornecido pelo ingresso de mais fluido que vem do condensador, mantendo, dessa maneira, fluido refrigerante no evaporador.
  • Na sua trajetória desde o condensador até o evaporador, o refrigerante passa através de um dispositivo de expansão, onde ele perde a sua pressão e volta a ter a sua temperatura de vaporização.
  • É assim que o circuito se completa e o fluido refrigerante volta a ter condições de absorver calor.
  • O sistema de refrigeração por compressão está dividido em dois circuitos: de alta pressão e de baixa pressão. Os elementos que formam o circuito de alta pressão são aqueles que ficam entre a saída do compressor e o dispositivo de expansão. O circuito de baixa pressão fica entre a saída do dispositivo de expansão até a entrada do compressor.

30/11/2009

Refrigeração Aula 3 - 2009

  • Os sistemas físicos que encontramos na Natureza consistem em um agregado de um número muito grande de átomos. A matéria está em um dos três estados: sólido, líquido ou gasoso: Nos sólidos, as posições relativas (distância e orientação) dos átomos ou moléculas são fixas. Nos líquidos as distâncias entre as moléculas são fixas, porém sua orientação relativa varia continuamente.
  • Nos gases, as distâncias entre moléculas, são em geral, muito maiores que as dimensões das mesmas. As forças entre as moléculas são muito fracas e se manifestam principalmente no momento no qual chocam. Por esta razão, os gases são mais fáceis de descrever que os sólidos e que os líquidos. O gás contido em um recipiente, é formado por um número muito grande de moléculas, 6.02·10²³ moléculas em um mol de substância.
  • Quando se tenta descrever um sistema com um número muito grande de partículas resulta difícil (é impossível) descrever o movimento individual de cada componente. Por isto mediremos grandezas que se referem ao conjunto: volume ocupado por uma massa de gás, pressão que exerce o gás sobre as paredes do recipiente e sua temperatura. Estas quantidades físicas são denominadas macroscópicas, no sentido de que não se referem ao movimento individual de cada partícula, e sim do sistema em seu conjunto.
  • Denominamos estado de equilíbrio de um sistema quando as variáveis macroscópicas pressão p, volume V, e temperatura T, não variam. O estado de equilíbrio é dinâmico no sentido de que os constituintes do sistema se movem continuamente. O estado do sistema é representado por um ponto em um diagrama p-V. Podemos levar o sistema desde um estado inicial a outro final através de uma sucessão de estados de equilíbrio.
  • Se denomina equação de estado, a relação que existe entre as variáveis p, V, e T. A equação de estado mais simples é a de um gás ideal pV=nRT, denominada Equação de Clapeyron(foto), onde n representa o número de mols, e R a constante dos gases R=0.082 atm·l/(K mol). Geralmente para fins de cálculos, igualamos n=1 assim teremos uma nova composição da equação de Clapeyron, onde n será desprezível e R=0,082(constante dos Gases). Desta forma(p.V=R.T), podemos calcular as variações da pressão, do volume ou da temperatura do fluido refrigerante.
  • Denominamos energia interna do sistema a soma das energias de todas as suas partículas. Em um gás ideal as moléculas somente tem energia cinética, os choques entre as moléculas são supostos perfeitamente elásticos, a energia interna somente depende da temperatura. Na máquina frigorífica(processo de refrigeração), o sistema recebe trabalho, através de uma energia eletromecânica que comprime o fluido refrigerante e fornece calor em forma de energia.
  • A reação sofrida pelo próprio fluido(endotérmica), absorve toda energia do meio, pois o corpo de maior temperatura cede calor para o corpo de menor temperatura. Desta forma temos um processo cíclico fechado e reversível que acontece pelas variações que o fluido sofre na sua composição molecular, onde levamos em conta a relação variação de temperatura e estado que traduzimos como sendo calor sensível e calor latente.

27/11/2009

Refrigeração Aula 2 - 2009

Se a pressão exercida na superfície de um corpo líquido for reduzida, este passará ao estado gasoso mais facilmente, requerendo neste caso uma quantidade menor de calor para evaporar. Por isso uma das primeiras etapas cumpridas no desenvolvimento dos sistemas de refrigeração foi encontrar o fluido cujo ponto de evaporação fosse mais baixo do que o da água. Esta característica foi encontrada nos chamados "fluidos refrigerantes". O fluido CFC-12 (R12) era um dos mais usados até ser proibido pelo elevado poder destrutivo do ozônio atmosférico (encarregado de interceptar a maior parte das radiações ultravioletas). O fluido HCFC-22 (R22) consegue a combinação de ótimas características químicas e físicas a um elevado rendimento volumétrico, sendo usado nas instalações de climatização de baixa a médias potências. O fluido CFC 114, é usado nos compressores centrífugos nas instalações de climatização. Conhecidos na realidade doméstica como “gás de geladeira”, os agentes refrigerantes são substâncias que absorvem grande quantidade de calor ao passarem do estado líquido para o gasoso. A absorção depende de uma fonte extra para efetuar a troca de calor (água ou o ar) e ocorre justamente com a mudança de fase do fluido (calor latente). Inicialmente, os refrigerantes mais usados eram a amônia, o dióxido de carbono, dióxido de enxofre e cloreto de metila. Em 1931, o setor conheceu os refrigerantes de fluorcarbono, fabricados pela Dupont. No ano seguinte, o cientista Thomas Midgely Jr. inventou o refrigerante 12, mais conhecido como Freon 12, ou o famigerado clorofluorcarbono (CFC). Este tem a característica de apresentar reação endotérmica – capacidade de regular sua própria temperatura de acordo com a interação com o meio – quando expande ou quando vaporiza. Além disso, não é inflamável, não é explosivo, não é tóxico e não corrói metais. No final da década de 80, um golpe esfriou o entusiasmo dos adeptos do CFC e outros. Evidências científicas ligaram os produtos de fluorcarbonos a buracos na camada de ozônio, importante barreira ao excesso de radiação solar ultravioleta na superfície terrestre. Em pesquisa de refrigerantes substitutos, a categoria dos hidrocarbonetos (HC) resultam inócuos para o ambiente, mas são extremamente inflamáveis, portanto são pouco adaptados aos Sistemas civis; a categoria dos refrigerantes naturais (amônia) apresenta boas propriedades termodinâmicas, baixa inflamabilidade, mas elevada toxicidade, enfim à categoria dos hidro-fluorcaburetos (HFC) que não têm o impacto no ozônio estratosférico, mas aumenta a poluição do ar (quantidades de CO² no ar). O gás HFC 134a (R134a) substitui o CFC-12 na refrigeração civil, seu impacto é baixo no ozônio, mas não é adaptado para os sistemas de climatização. A substituição do R22 recorre-se ao fluido HFC 407C (R407c) ou ao HFC 410A (R410a), mas em ambos os casos são necessários uma conversão das instalações de refrigeração e de ar-condicionado. Além destes, pode ser usado também o fluido HFC 404A (R404A) que, porém, apresenta um potencial de superaquecimento global entre os mais elevados da categoria dos hidrofluorcarburetos. Portanto, os sistemas de climatização continuam utilizando o R 22, porém em processo extremamente controlado, ou seja, para ocorrer uma entropia (desordem no sistema), seria necessário uma ação voluntária no sentido de romper a tubulação, causando assim um vazamento.

23/11/2009

Refrigeração Aula 1 - 2009

  • Propriedades termodinâmicas são características macroscópicas de um sistema, como: volume, temperatura, pressão etc.
  • Estado termodinâmico pode ser entendido como sendo a condição em que se encontra a substância, sendo caracterizado pelas suas propriedades.
  • Processo é uma mudança de estado de um sistema. O processo representa qualquer mudança nas propriedades da substância. Uma descrição de um processo típico envolve a especificação dos estados de equilíbrio inicial e final.
  • Ciclo é um processo, ou mais especificamente uma série de processos, onde o estado inicial e o estado final do sistema coincidem.
  • Propriedade termodinâmica de uma substância é qualquer característica observável dessa substância. Um número suficiente de propriedades termodinâmicas independentes constitui uma definição completa do estado da substância.
  • As propriedades termodinâmicas mais comuns são: temperatura (T), pressão (P), volume (V). Além destas propriedades termodinâmicas mais familiares, e que são mensuráveis diretamente, existem outras propriedades termodinâmicas fundamentais para a análise de transferência de calor, trabalho e energia, não mensuráveis diretamente, que são: energia interna, entalpia e entropia.
  • Se um líquido for introduzido num vaso onde existe, inicialmente, um grau de vácuo e cujas paredes são mantidas a temperatura constante, ele se evaporará imediatamente. No processo, o calor latente de vaporização, ou seja, o calor necessário para a mudança do estado líquido para o estado vapor é fornecido pelas paredes do vaso. O efeito de resfriamento resultante é o ponto de partida do ciclo de refrigeração.
  • À medida que o líquido se evapora, a pressão dentro do vaso aumenta até atingir, eventualmente, a pressão de saturação para a temperatura considerada. Depois disto nenhuma quantidade de líquido evaporará e, naturalmente, o efeito de resfriamento cessará.

12/08/2009

O GERADOR ELÉTRICO - AULA 1

Nesta teleaula você vai ver que a produção de energia elétrica se baseia na alteração de um campo magnético nas proximidades de uma bobina.

07/08/2009

CONCURSO FAFEN PETROBRAS AULA 3

Aula de Comandos Elétricos: Assista mais uma vídeo aula sobre tema específico da área de Eletricidade, Instrumentação e Operação.

03/08/2009

CONCURSO FAFEN PETROBRAS - AULA 1

Aula de Eletrônica: Acompanhe aqui esta aula de Eletrônica (Conhecimentos Específicos), que está no Edital Oficial do Concurso Fafen Petrobras para os Cargos de Técnico em Instrumentação, Técnico de Manutenção Elétrica e Técnico em Operação. Compre sua Apostila Completa em CD-ROM.

29/06/2009

GERAÇÃO DE ENERGIA ELÉTRICA

Este vídeo apresenta o processo de geração de Energia Elétrica. Aqui mostramos a Turbina de Três Gargantas na China. Veja o vídeo e faça seu comentário! Para saber mais sobre a maior Hidrelétrica do Mundo acesse: http://engenharianodiaadia.blogspot.com/2009/07/hidroeletrica-de-tres-gargantas-china.html

As Dez Mais Lidas...

Leia também...

Determine a energia potencial elétrica...

Determine a energia potencial elétrica presente no ponto P, admita:  Q= 10 ^-6    ED= 0,7 m  E o meio é o vácuo. ATIVIDADE RESOLVIDA   ...