01/04/2008

Aula de Química - Petrobrás.

Elemento químico, isótopos, isóbaros e isótonos Os diferentes tipos de átomo e suas representações Cada um dos tipos de átomos existentes na natureza ou gerados artificialmente, é chamado de elemento químico. Cada um deles é identificado por um nome e um símbolo formado por uma ou duas letras. A primeira é sempre maiúscula e a segunda, quando houver, sempre minúscula. O nome do elemento varia de idioma para idioma, mas o símbolo é único para o mundo todo. Número de Massa (A): informa a somatória de prótons e nêutrons contida num determinado átomo. Número Atômico (Z): informa a quantidade de prótons contida num determinado átomo. Átomos com mesmo número atômico pertencem ao mesmo elemento químico. Ter mesmo valor para Z garante que os átomos possuam mesmo comportamento químico. Z também informa o número de elétrons, se o átomo em questão for neutro. Subtraindo Z do valor de A, obtemos o número de nêutrons. Z = prótons (sempre) = elétrons (átomos neutros) A - Z = nêutrons (sempre) Os números atômico e de massa podem ser representado simultaneamente com o símbolo do elemento em questão. A convenção é a seguinte: ou Isótopos: átomos que apresentam mesmo número atômico e número de massa diferentes. Pertencem ao mesmo elemento químico, pois têm mesmo valor de Z. 1 H 1 1 H 2 1 H 3 Isóbaros: átomos que apresentam valores diferentes para o número atômico e mesmo número de massa. 20 Ca42 21 Sc42 Isótonos: átomos que apresentam valores diferentes de número atômico e de massa, no entanto, mesmo número de nêutrons (A - Z). 17 Cl 37 20 Ca 40 Exemplo 1 (PUC - Campinas) O silício, elemento químico mais abundante na natureza depois do oxigênio, tem grande aplicação na indústria eletrônica. Por outro lado, o enxofre é de importância fundamental na obtenção do ácido sulfúrico. Sabendo-se que o átomo 14Si28 é isótono de uma das variedades isotópicas do enxofre, 16S, pode-se afirmar que esse átomo de enxofre tem número de massa: a) 14 b) 16 c) 30 d) 32 e) 34 Exemplo 2 (Fatec - SP) Os íons Ca2+ e Pb2+ possuem: Dados os números atômicos: Ca = 20 e Pb = 82) a) mesmo número de prótons e elétrons b) mesmo número de prótons e nêutrons c) mesma carga nuclear e diferentes massas atômicas d) igual soma de número de prótons e de nêutrons e) igual diferença entre número de prótons e elétrons Exemplo 3 (Mackenzie - SP) A característica que identifica isótopos de um elemento químico ´a de apresentarem entre si: a) o mesmo número de massa b) o mesmo número de prótons e o mesmo número de massa c) o mesmo número de nêutrons d) distribuição eletrônica diferente e) o mesmo número atômico e diferentes números de massa Exemplo 4 (Fuvest - SP) O número de elétrons do cátion X2+ de um elemento X é igual ao número de elétrons do átomo neutro de um gás nobre. Este átomo de gás nobre apresenta número atômico 10 e número de massa 20. O número atômico do elemento X é: a) 8 b) 10 c) 12 d) 18 e) 20 Exemplo 5 (Mackenzie - SP) Um certo átomo neutro M tem número atômico igual a x e número de massa igual a y. O número de elétrons no íon M3+ é igual a: a) x + 3 b) (x + y) - 3 c) y - 3 d) x - 3 e) x Exemplo 6 (UFSC) São dados os átomos: I) 35Br80 II) 36Kr80 III) 35Br81 IV) 36Kr81 Indique as proposições verdadeiras. a) I e III são isótopos b) II e IV possuem o mesmo número de massa c) I e IV têm igual número de nêutrons d) I e II possuem o mesmo número de massa e) II e III são isótopos. Respondam os testes e coloquem nos comentários.Posteriormente postarei os gabaritos!

Estudo dos Gases - Termodinâmica

Os sistemas físicos que encontramos na Natureza consistem em um agregado de um número muito grande de átomos. A matéria está em um dos três estados: sólido, líquido ou gasoso: Nos sólidos, as posições relativas (distância e orientação) dos átomos ou moléculas são fixas. Nos líquidos as distâncias entre as moléculas são fixas, porém sua orientação relativa varia continuamente. Nos gases, as distâncias entre moléculas, são em geral, muito maiores que as dimensões das mesmas. As forças entre as moléculas são de pouca intensidade e se manifestam principalmente no momento no qual se chocam. Por esta razão, os gases são mais fáceis de descrever que os sólidos e que os líquidos. O gás contido em um recipiente, é formado por um número muito grande de moléculas, 6,02·10²³ moléculas em um mol de substância. Quando se tenta descrever um sistema com um número muito grande de partículas se torna difícil, ou melhor impossível descrever o movimento individual de cada componente. Por isto mediremos as grandezas que se referem ao conjunto: volume ocupado por uma massa de gás, pressão que exerce o gás sobre as paredes do recipiente e sua temperatura. Estas quantidades físicas são denominadas macroscópicas, no sentido de que não se referem ao movimento individual de cada partícula, e sim do sistema em seu conjunto.


Denominamos estado de equilíbrio de um sistema quando as variáveis macroscópicas pressão p, volume V, e temperatura T, não variam. O estado de equilíbrio é dinâmico no sentido de que os constituintes do sistema se movem continuamente. O estado de equilíbrio do sistema é representado por um ponto em um diagrama p-V. Podemos levar o sistema desde um estado inicial a outro final através de uma sucessão de estados de equilíbrio. Se denomina equação de estado a relação que existe entre as variáveis p, V, e T. A equação de estado mais simples é a de um gás ideal pV=nRT, descrita pelo cientista francês Paul Clapeyron, onde n representa o número de mols, e R a constante dos gases R=0.082 atm·l/(K mol). Se denomina energia interna do sistema a soma das energias de todas as suas partículas. Em um gás ideal as moléculas somente tem energia cinética, os choques entre as moléculas são supostos perfeitamente elásticos, a energia interna somente depende da temperatura.

As Dez Mais Lidas...

Leia também...

ATIVIDADE 1 - ACIONAMENTOS ELÉTRICOS [RESOLVIDA]

1) A NBR 5410 – instalações elétricas de baixa tensão é o guia para esse tipo de instalação, abordando dimensionamento de cabos, condutos, p...