Pesquisar este blog

ORION1

11/09/2008

Máquinas Térmicas e Refrigeração - Aula 7

SISTEMAS DE CONTROLE DA EXPANSÃO DO FLUIDO REFRIGERANTE TUBOS CAPILARES Nos sistemas de pequena capacidade como geladeiras, freezers e aparelhos condicionadores de ar, o dispositivo de expansão do fluido refrigerante utilizado é o tubo capilar. É um tubo de pequeno diâmetro, com determinado comprimento, que fica parcialmente enrolado no bulbo (filtro secador), este tem a função de fazer a ligação entre a saída do condensador e a entrada do evaporador. Essa diferença de diâmetro permite a expansão do fluido em estado líquido, quando este é forçado pelo motocompressor a sair do evaporador, causando uma reação endotérmica, absorvendo o calor do ambiente a ser refrigerado. Os tubos capilares são fabricados de cobre, latão ou ligas mais leve com uma porcentagem de cobre. Quando o motocompressor é desligado, ao atingir a eficiência térmica dos sistemas de refrigeração e climatização, ocorre um equilíbrio entre a pressão alta e baixa do sistema. Por este fato, nos sistemas de refrigeração de pequeno porte, como em nossa geladeira, não existe um reservatório propriamente dito, todo o ciclo de refrigeração é alimentado por uma quantidade mínima e controlada de fluido refrigerante. Essa quantidade é apenas para satisfazer a capacidade de evaporação e manter a vedação do sistema, com uma quantidade de refrigerante líquido entre a saída do condensador e o bulbo. Os tubos capilares apresentam como vantagens o baixo custo, por ser de cobre, a simplicidade por não apresentarem partes móveis, a redução da quantidade e custo do fluido refrigerante, pois descarta a utilização de um reservatório de fluido, o que em caso de um vazamento (entropia), causaria um prejuízo ainda maior. Porém, esse tubo, pode apresentar risco de quebra por ser frágil, além da impossibilidade da regulagem do fluxo do fluido. VÁLVULAS MECÂNICAS As válvulas mecânicas permitem, através do deslocamento de um diafragma, o fluxo do fluido refrigerante para o sistema de refrigeração ou climatização. São também conhecidas como válvulas de equalização interna. Seu acionamento se dá, através da dilatação térmica do mercúrio contido em um bulbo, que fica em contato com o evaporador. Na outra extremidade, temos o mercúrio em contato com uma lâmina, que controla o fluxo do fluido, abrindo ou fechando a válvula, de acordo com a eficiência térmica encontrada no evaporador. Se a temperatura no interior do evaporador aumenta, o mercúrio se dilata pressionado o diafragma, forçando a passagem do fluido até que a temperatura vá se corrigindo, até atingir o ponto de eficiência (set point), quando a lâmina volta a se comprimir termicamente, eliminando a pressão sobre o diafragma, fechando a válvula por completo. Concomitantemente, outro bulbo contendo mercúrio, estará controlando o funcionamento do motocompressor, ligando e desligando o contato elétrico do mesmo, ao mesmo tempo em que a válvula estará abrindo ou fechando. Este sincronismo, garante ao sistema, um funcionamento equalizado do ciclo, através do controle térmico da temperatura, contribuindo para o controle do consumo de energia elétrica que alimenta o sistema de refrigeração. Figura 1 – Válvula de expansão mecânica com acionamento por diafragma. VÁLVULAS ELETRÔNICAS MICROPROCESSADAS O sinal do controle das válvulas eletrônicas pode ser gerado a partir de um termistor, instalado na saída do evaporador, este, ao detectar o aumento da temperatura no evaporador, reduz sua resistência elétrica. Esta variação de resistência, quando analisada por um circuito eletrônico, envia um sinal digital para o posicionamento da agulha da válvula. Este sistema possibilita um controle mais preciso e eficiente do fluxo do fluido refrigerante, resultando na melhoria da eficiência térmica, conseqüentemente, consumindo menos energia elétrica. Diante disso, também teremos um controle mais preciso da temperatura do ambiente refrigerado ou climatizado. Este sinal alimentará uma fonte, que será o módulo controlador do fluxo do fluido refrigerante. Então, o módulo poderá controlar válvulas solenóides e motores de passo, para regular a abertura ou o fechamento das válvulas de expansão termostática. Figura 2 – Módulos Controladores de Expansão. (PLC) CONTROLES DE FLUXO VÁLVULAS SOLENÓIDES Podemos utilizar o controle do fluxo do fluido através de válvulas de expansão acionadas por solenóides, com funcionamento semelhante ao das válvulas de controle direcional, utilizadas nos circuitos hidráulicos, controlando a vazão do fluido refrigerante. Porém, estas válvulas apresentam uma desvantagem, por serem operadas de forma on/off, causam golpes no fluido quando são fechadas repentinamente, causando vibração excessiva nas tubulações do circuito de refrigeração. Figura 3 – Válvulas de Expansão controladas por solenóides. MOTORES DE PASSO Por serem eletronicamente controlados, podemos abrir ou fechar as válvulas de expansão, através de motores de passo, utilizando acoplamentos e cremalheiras, transformando o movimento de rotação em movimento de translação. Permitindo, assim, o fechamento ou a abertura da válvula de expansão termostática. Esse funcionamento dos motores de passo permite que o controle do fluxo do fluido refrigerante seja gradativo, de acordo com a condição de eficiência encontrada no sistema de refrigeração. Figura 4 – Motores de Passo.

10/09/2008

Máquinas Térmicas e Refrigeração - Aula 6

SISTEMAS DE REFRIGERAÇÃO: O Ciclo de compressão do fluido refrigerante é atualmente utilizado em sistemas de refrigeração de pequeno e médio porte, como geladeiras, freezers, balcões frigoríficos e condicionadores de ar. A base destes sistemas está na compressão do fluido por um motocompressor, onde o ciclo se coincide. O ciclo começa quando o sistema passa de termostático (ciclo parado), para termodinâmico, quando se passa a aproveitar a energia interna do sistema através da entalpia (aproveitamento de energia de uma substância), onde o fluido refrigerante, através de suas características termodinâmicas, começa a se deslocar do tubo capilar, quando está em estado liquefeito, para o Evaporador, onde uma diferença de diâmetro existente entre o capilar e o evaporador proporciona evaporação ao fluido refrigerante, que se evapora a uma temperatura baixa (-30º). Durante essa etapa do ciclo, um bulbo contendo mercúrio já se encarregou de acionar o motocompressor, através de um circuito termoelétrico. Estando acionado, o motocompressor começa a agir como uma bomba, retirando todo o fluido em estado gasoso, que numa reação endotérmica absorve todo o calor do Evaporador e de qualquer corpo ou substância que nele se encontre, deixando o ambiente refrigerado ciclicamente. Nesse ponto o fluido encontra-se com sua pressão e temperatura baixa e seu volume se reduzindo (transformação de um gás num ciclo reversível). Até quando atingem o interior da câmara de compressão do motocompressor, onde ocorre uma transformação adiabática (tão rápido que o fluido não troca calor com o meio), apenas absorve parte do calor gerado pelo trabalho eletromecânico, responsável pelo funcionamento do pistão de compressão. Após ser comprimido, o fluido ainda em estado gasoso, é forçado a sair da câmara de combustão, por uma tubulação de menor diâmetro, causando com isso, o aumento da pressão e da temperatura do fluido, conseqüentemente seu volume também sofrerá variação, aumentando consideravelmente. Quando o fluido gasoso superaquecido (reação exotérmica) chega ao Condensador, todo o calor retirado do interior do Evaporador é dissipado, ao trocar calor com o meio externo. Nas geladeiras essa troca e dissipação ocorrem de maneira natural, através da ventilação das aletas que ficam na parte de trás. Nos condicionadores de ar essa dissipação se dá de maneira forçada, através de um ventilador que expulsa o calor do condensador. Essa ação do calor latente transforma o fluido refrigerante em estado gasoso para estado liquefeito, através da formação de fluido condensado resultante da diferença de temperatura do fluido e o meio externo.

09/09/2008

Máquinas Térmicas e Refrigeração - Aula 5

Conceitos Fundamentais da Refrigeração Definições: Propriedades termodinâmicas: São características macroscópicas de um sistema, como: volume, temperatura, pressão etc. Estado Termodinâmico: Pode ser entendido como sendo a condição em que se encontra a substância, sendo caracterizado pelas suas propriedades. Processo: É uma mudança de estado de um sistema. O processo representa qualquer mudança nas propriedades da substância. Uma descrição de um processo típico envolve a especificação dos estados de equilíbrio inicial e final. Ciclo: É um processo, ou mais especificamente uma série de processos, onde o estado inicial e o estado final do sistema (substância) coincidem. Substância Pura: É qualquer substância que tenha composição química invariável e homogênea. Ela pode existir em mais de uma fase (sólida, líquida e gasosa), mas a sua composição química é a mesma em qualquer das fases. Propriedades Termodinâmicas de uma Substância: Uma propriedade de uma substância é qualquer característica observável dessa substância. Um número suficiente de propriedades termodinâmicas independentes constitui uma definição completa do estado da substância. As propriedades termodinâmicas mais comuns são: temperatura (T), pressão (P), volume (v). Além destas propriedades termodinâmicas mais familiares, e que são mensuráveis diretamente, existem outras propriedades termodinâmicas fundamentais para a análise de transferência de calor, trabalho e energia, não mensuráveis diretamente, que são: energia interna (u), entalpia (h) e entropia (s). Energia Interna (u): São as energias que a matéria possui devido ao movimento de forças intermoleculares. Esta forma de energia pode ser decomposta em duas partes: a) Energia cinética interna ⇒ relacionada à velocidade das moléculas; b) Energia potencial interna ⇒ relacionada às forças de atração entre as moléculas. As mudanças na velocidade das moléculas são identificadas, macroscopicamente, pela alteração da temperatura da substância (sistema), enquanto que as variações na posição são identificadas pela mudança de fase da substância (sólido líquido ou vapor). Entalpia (h): Na análise térmica de alguns processos específicos, freqüentemente são encontradas certas combinações de propriedades termodinâmicas. Assim é conveniente definir a nova propriedade termodinâmica chamada “entalpia”. Entropia (s): Esta propriedade termodinâmica representa uma medida da desordem molecular da substância.

08/09/2008

Máquinas Térmicas e Refrigeração - Aula 4

TURBINAS A VAPOR A Turbina é um tipo de Máquina Térmica que utiliza a energia de combustão externa de uma caldeira geradora de vapor, sob forma de energia termodinâmica. A Turbina transforma em energia mecânica a energia contida no vapor, sob a forma de energia térmica e de pressão. O elemento básico da turbina é o rotor, que conta com paletas, hélices, lâminas ou cubos colocados ao redor de sua circunferência, de forma que o fluido em movimento produza uma força tangencial que impulsiona o rotor, fazendo-o girar. Essa energia mecânica criada é impulsionada através de um eixo para transferir movimento a uma máquina, um compressor, um gerador elétrico ou uma hélice. As turbinas se classificam como hidráulicas ou de água, a vapor ou de combustão. Atualmente, a maior parte da energia elétrica mundial é produzida com o uso de geradores movidos por turbinas. A turbina a vapor é atualmente o mais usado entre os diversos tipos de acionadores primários existentes. Uma série favorável de características concorreu para que a turbina a vapor se destacasse na comparação com outros acionadores primários, como a turbina hidráulica, o motor de combustão interna, a turbina a gás. O ponto principal entre estas características, é que a energia térmica gerada para acionar as turbinas, utiliza uma fonte de energia onde o ciclo reaproveita parte da energia gerada, sob forma de fluido condensado, resultante do choque térmico existente entre o vapor e a tubulação que o transporta. Componentes Básicos ESTATOR É o elemento fixo da turbina (que envolve o rotor) cuja função é transformar a energia termodinâmica do vapor em energia mecânica através dos distribuidores. ROTOR É o elemento móvel da turbina, cuja função é transformar a energia cinética do vapor em trabalho mecânico através dos receptores fixos. É o elemento propulsor do movimento para as máquinas que serão acionadas pela turbina. EXPANSOR É o órgão cuja função é orientar o jato de vapor sobre as palhetas móveis. No expansor o vapor perde pressão e ganha velocidade. Podem ser convergentes ou convergentes divergentes, conforme sua pressão de descarga seja maior ou menor que 55% da pressão de admissão. São montados em blocos com 1, 10, 19, 24 ou mais expansores de acordo com o tamanho e a potência da turbina, e conseqüentemente terão formas construtivas específicas, de acordo com sua aplicação. PALHETAS São chamadas palhetas móveis, as que são instaladas no rotor; e fixas, as instaladas no estator. As palhetas fixas (guias, diretrizes) orientam o vapor para a coroa de palhetas móveis seguinte. As palhetas fixas podem ser encaixadas diretamente no estator (carcaça), ou em rebaixos usinados em peças chamadas de anéis suportes das palhetas fixas, que são, por sua vez, presos à carcaça. As palhetas móveis são peças com a finalidade de receber o impacto do vapor proveniente dos expansores (palhetas fixas) para movimentação do rotor. São fixadas ao aro de consolidação pela espiga e ao disco do rotor pelo malhete e, ao contrário das fixas, são removíveis. TIPOS E APLICAÇÕES As turbinas a vapor são partes de um sistema gerador de energia de combustão externa. As instalações de potência com turbina a vapor visam, fundamentalmente, obter energia elétrica ou mecânica e vapor para processo industrial. Basicamente, as centrais a vapor são plantas transformadoras de energia, ou seja, elas transformam: Energia Termodinâmica. Energia Mecânica Energia Elétrica A geração de energia elétrica pode ser através de centrais termelétricas convencionais ou nucleares e a geração de energia mecânica tem a finalidade básica de acionar máquinas rotativas, como bombas centrífugas, compressores centrífugos e axiais, ventiladores, etc. As condições (temperatura e pressão) do vapor em uma turbina variam com as necessidades de cada aplicação, tendo como limite superior condições em torno de 306 atm e 650ºC.

05/09/2008

Máquinas Térmicas e Refrigeração - Aula 3 (complemento)

Equipamentos Rotativos dos Motores. Pistão: Parte móvel da câmara de combustão. Recebe toda a energia de combustão, transmitindo essa força à biela, através da fixação de um pino (pino do pistão). Seu material de fabricação e o antimônio (liga de alumínio). Biela: É o braço de ligação do pistão com o eixo de manivelas (virabrequim), recebe a energia térmica do pistão, transmitindo-a ao virabrequim. O conjunto biela/pistão é o responsável pela transformação do movimento retilíneo em movimento rotativo do eixo de manivelas. Esse é o chamado giro do motor, ou seja, o número de voltas do motor, mais conhecido como RPM. Eixo de Manivelas: Podemos chamá-lo de virabrequim ou eixo motor, responsável direto pelo movimento do motor, através da força recebida do conjunto biela/pistão. Geralmente, este conjunto fica situado na parte inferior do bloco. Necessita de uma lubrificação constante, para que o sincronismo e uniformidade de funcionamento estejam mantidos. Eixo comando de válvulas: Sua função é comandar o sincronismo de abertura e fechamento das válvulas de admissão e escape. Os tempos acontecem simultaneamente alternados, graças ao engrenamento entre o eixo comando de válvulas e o eixo de manivelas, através de engrenagens, correntes ou correias dentadas. Na sua extensão estão os ressaltos que comandam as válvulas, coordenando os tempos dos pistões acontecendo um de cada vez. Válvulas de admissão e escape: São as responsáveis pela passagem da mistura combustível+ar (Otto) e somente ar (Diesel). O deslocamento ordenado de cada válvula no tempo correto permite a admissão ou descarga no interior do cilindro. Bomba de Óleo: Mecanismo responsável pelo bombeamento do óleo lubrificante que está no cárter. Essa lubrificação é distribuída sob pressão, por diversos pontos do motor, visando estabilizar o funcionamento diminuindo o atrito e o desgaste das partes móveis do motor. Bomba d’água: Equipamento destinado a realizar a circulação do fluido de arrefecimento pelas galerias do bloco do motor e o radiador, visando estabilizar a temperatura de trabalho, através da dissipação do calor absorvido pelo fluido em contato com as partes quentes do motor. A ausência desse sistema elevaria a temperatura, tornando impossível a continuidade de funcionamento do motor. A dissipação do calor do fluido se dá de maneira forçada por uma ventoinha, que “sopra” o calor para fora, através das aletas do radiador, funcionando como um permutador de calor. Bomba de Combustível: Sua função é deslocar o combustível que está no tanque para o sistema de alimentação do motor, para pulverizá-lo sob pressão no interior da câmara de combustão, suprindo, assim, todas as suas condições de trabalho, como carga, rotação e temperatura. Existem dois tipos de bombas: a mecânica, presente nos carros carburados e movidos por um eixo; e a elétrica, que equipa os veículos com injeção eletrônica e é acionada por um motor elétrico.

Máquinas Térmicas e Refrigeração - Aula 3

Equipamentos Estáticos dos Motores: Bloco: É o motor propriamente dito, estrutura robusta onde suporta todos os elementos necessários ao funcionamento do motor de combustão interna. O Bloco apresenta furos vazados (usinados), onde são montados os pistões para formar as câmaras de combustão. Na parte inferior do bloco, ficam os alojamentos dos mancais centrais. Estes apóiam o eixo de manivelas ou virabrequim como é mais conhecido. Cárter: Se localiza na parte inferior do bloco, têm duas funções, uma é cobrir os componentes inferiores dos motores e a outra é de ser o reservatório de óleo lubrificante das partes móveis dos motores. Cabeçote: É a tampa do motor, que forma com o bloco a câmara de combustão, onde o pistão comprime a mistura combustível+ar, nos motores do Ciclo Otto e somente ar nos motores do Ciclo Diesel. No cabeçote é que são fixadas as velas (gasolina/álcool/GNV), ou os bicos injetores (diesel). Entre o cabeçote e o bloco colocamos a junta de vedação, popularmente chamada de junta de tampão. No cabeçote, também é montado o eixo comando de válvulas, responsável pelo controle de admissão e descarga, para que o sincronismo de funcionamento do motor se mantenha estável. Câmara de Combustão: Também podemos considerar como uma câmara de compressão, ou seja, o espaço livre que fica entre o pistão e o cabeçote, quando este se encontra no ponto morto superior (PMS). Relação de Compressão: É a relação entre o diâmetro da câmara de combustão e a cilindrada apresentada pelo motor. É calculada pela seguinte expressão: RC = C + v / v. Onde: C = cilindrada. V = volume da câmara de combustão. A unidade de medida apresentada para estes valores é o cm³. Normalmente a relação de compressão de motores novos é de 6:1 e 8:1, nos motores a gasolina e 16:1 e 20:1, nos motores a diesel. Cilindrada: É o volume total de combustível deslocado pelo pistão entre o ponto morto inferior (PMI) e o ponto morto superior (PMS), multiplicado pelo número de cilindros que tem o motor. Esse resultado é apresentado em cm³, através da fórmula: C = PI. D². Curso do pistão. N dividindo-se todo o resultado por quatro. Potência: É a medida do trabalho realizado numa unidade de tempo. É a estimativa alcançada pela capacidade do veículo de desenvolver velocidade. Quanto mais potência tem uma máquina térmica, maior será sua capacidade de atingir maiores velocidades. Esta variação é alcançada quando o motor aumenta sua rotação. A potência máxima será alcançada na rotação máxima (maior giro do motor).

Leia também...

ATIVIDADES DE ESTUDO 1 – MECÂNICA E RESISTÊNCIA DOS MATERIAIS [RESOLVIDA]

QUESTÃO 1 Considere que você seja o responsável técnico em uma empresa que projeta estrutura metálicas, e precise avaliar um ponto específic...