Pesquisar este blog

ORION1

28/11/2008

Máquinas e Equipamentos Seg do Trabalho Aula 07

Para estudarmos Eletricidade Básica abordaremos alguns elementos importantes para o entendimento desta aula. Falaremos de dispositivos elétricos como os Geradores, que transformam qualquer modalidade de energia em energia elétrica. Exemplo de geradores são os alternadores das usinas hidrelétricas. Outro dispositivo importante são os receptores, estes transformam energia elétrica em outra modalidade de energia, são também chamados de Consumidores de energia elétrica. Os Receptores podem ser resistivos, quando transformam a energia elétrica em energia térmica, através do efeito Joule, como os chuveiros (que dispõem de uma resistência), ou podem ser ativos, como os eletrodomésticos e os motores elétricos que transformam a energia elétrica em outra modalidade de energia através dos efeitos da corrente elétrica. Os efeitos da corrente elétrica são: Efeito Magnético, já que toda corrente elétrica gera um campo magnético.Efeito Joule, na passagem da corrente pelos condutores, estes se aquecem quando encontram resistência ao seu fluxo, gerando calor. Efeito fisiológico, quando os pulsos da corrente elétrica são maiores que os pulsos nervosos que estimulam o funcionamento do corpo humano. Esta diferença de potencial(DDP)resulta no choque. Portanto, uma intensidade de pulsos pode causar uma parada cardíaca. Efeito químico, quando os fenômenos elétricos nas estruturas moleculares resultam no armazenamento de energia. Desta forma, conseguimos manter uma capacidade energética nas baterias para diversos fins. Efeito luminoso, quando acontece uma emissão de radiação visível das moléculas que atravessam um filamento ou estimulam a propagação de um determinado fluido gasoso. Para melhor compreender toda esta estrutura dos circuitos elétricos devemos entender a formação das partículas subatômicas dos átomos. Assim, quando falarmos de condutores e isolantes o entendimento estará mais completo. Na estrutura do átomo temos os prótons, que representam as cargas positivas. Os elétrons representam as cargas negativas e os neutrons, que representam ascargas neutras. Então, quanto mais elétrons mais camadas, menos força de atração pelo núcleo, mais instabilidade elétrica e consequentemente maior condutibilidade elétrica.Podemos dizer que este material é condutor de energia elétrica. Quando tivermos menos elétrons, mais isolante será o material, já que terá baixa condutibilidade devido à força de atração pelo núcleo. O circuito elétrico é o caminho percorrido pela corrente elétrica quando este é ligado a uma fonte geradora de carga elétrica para alimentar um cunsumidor. Temos este exemplo de um circuito elétrico onde um consumidor(lâmpada), está ligado a uma fonte geradora(bateria). Se a corrente elétrica fizer ciclos constantes sem ser interrompida, teremos a lâmpada permanentemente acesa(efeito luminoso). Para apagar esta lâmpada utilizamos um dispositivo de manobra(interruptor). Porém, existem outras maneiras de interromper a corrente de fluxo de um circuito: No consumidor, quando por exemplo a lâmpada queima, retornando a corrente para a fonte. Na fonte podemos interromper o fluxo de corrente, quando uma bateria se esgota e não produz mais DDP. Ou diretamente no condutor, empregando os diferentes tipos de dispositivos de manobra. Existem variações num circuito elétrico. Estes podem estar abertos, quando não apresentam continuidade no fluxo de corrente e o consumidor não funciona.Podem estar fechados, quando apresentam continuidade e funcionamento do consumidor. O circuito pode estar desligado, quando o dispositivo de manobra não está acionado, mas ainda está energizado. Finalmente, temos o circuito desenergizado, quando a fonte geradora está devidamente desconectada do circuito, quando os condutores são desligados dos bornes de alimentação. Veja abaixo exemplos de circuito aberto e circuito fechado: Para realizarmos qualquer intervenção mecânica ou elétrica em um circuito elétrico, este tem que estar obrigatoriamente desenergizado para evitar o efeito fisiológico(choque elétrico), causado pela diferença de potencial existente entre o ser humano e o circuito, devido à variação da intensidade da corrente(amperagem).

Máquinas e Equipamentos Agroindustriais Aula 06

Para estudarmos Eletricidade Básica abordaremos alguns elementos importantes para o entendimento desta aula. Falaremos de dispositivos elétricos como os Geradores, que transformam qualquer modalidade de energia em energia elétrica. Exemplo de geradores são os alternadores das usinas hidrelétricas. Outro dispositivo importante são os receptores, estes transformam energia elétrica em outra modalidade de energia, são também chamados de Consumidores de energia elétrica. Os Receptores podem ser resistivos, quando transformam a energia elétrica em energia térmica, através do efeito Joule, como os chuveiros (que dispõem de uma resistência), ou podem ser ativos, como os eletrodomésticos e os motores elétricos que transformam a energia elétrica em outra modalidade de energia através dos efeitos da corrente elétrica. Os efeitos da corrente elétrica são: Efeito Magnético, já que toda corrente elétrica gera um campo magnético.Efeito Joule, na passagem da corrente pelos condutores, estes se aquecem quando encontram resistência ao seu fluxo, gerando calor. Efeito fisiológico, quando os pulsos da corrente elétrica são maiores que os pulsos nervosos que estimulam o funcionamento do corpo humano. Esta diferença de potencial(DDP)resulta no choque. Portanto, uma intensidade de pulsos pode causar uma parada cardíaca. Efeito químico, quando os fenômenos elétricos nas estruturas moleculares resultam no armazenamento de energia. Desta forma, conseguimos manter uma capacidade energética nas baterias para diversos fins. Efeito luminoso, quando acontece uma emissão de radiação visível das moléculas que atravessam um filamento ou estimulam a propagação de um determinado fluido gasoso. Para melhor compreender toda esta estrutura dos circuitos elétricos devemos entender a formação das partículas subatômicas dos átomos. Assim, quando falarmos de condutores e isolantes o entendimento estará mais completo. Na estrutura do átomo temos os prótons, que representam as cargas positivas. Os elétrons representam as cargas negativas e os neutrons, que representam ascargas neutras. Então, quanto mais elétrons mais camadas, menos força de atração pelo núcleo, mais instabilidade elétrica e consequentemente maior condutibilidade elétrica.Podemos dizer que este material é condutor de energia elétrica. Quando tivermos menos elétrons, mais isolante será o material, já que terá baixa condutibilidade devido à força de atração pelo núcleo. O circuito elétrico é o caminho percorrido pela corrente elétrica quando este é ligado a uma fonte geradora de carga elétrica para alimentar um cunsumidor. Temos este exemplo de um circuito elétrico onde um consumidor(lâmpada), está ligado a uma fonte geradora(bateria). Se a corrente elétrica fizer ciclos constantes sem ser interrompida, teremos a lâmpada permanentemente acesa(efeito luminoso). Para apagar esta lâmpada utilizamos um dispositivo de manobra(interruptor). Porém, existem outras maneiras de interromper a corrente de fluxo de um circuito: No consumidor, quando por exemplo a lâmpada queima, retornando a corrente para a fonte. Na fonte podemos interromper o fluxo de corrente, quando uma bateria se esgota e não produz mais DDP. Ou diretamente no condutor, empregando os diferentes tipos de dispositivos de manobra. Existem variações num circuito elétrico. Estes podem estar abertos, quando não apresentam continuidade no fluxo de corrente e o consumidor não funciona.Podem estar fechados, quando apresentam continuidade e funcionamento do consumidor. O circuito pode estar desligado, quando o dispositivo de manobra não está acionado, mas ainda está energizado. Finalmente, temos o circuito desenergizado, quando a fonte geradora está devidamente desconectada do circuito, quando os condutores são desligados dos bornes de alimentação. Veja abaixo exemplos de circuito aberto e circuito fechado: Para realizarmos qualquer intervenção mecânica ou elétrica em um circuito elétrico, este tem que estar obrigatoriamente desenergizado para evitar o efeito fisiológico(choque elétrico), causado pela diferença de potencial existente entre o ser humano e o circuito, devido à variação da intensidade da corrente(amperagem).

25/11/2008

Refrigeração - Eletrotécnica - Aula 02

Se a pressão exercida na superfície de um corpo líquido for reduzida, este passará ao estado gasoso mais facilmente, requerendo neste caso uma quantidade menor de calor para evaporar. Por isso uma das primeiras etapas cumpridas no desenvolvimento dos sistemas de refrigeração foi encontrar o fluido cujo ponto de evaporação fosse mais baixo do que o da água. Esta característica foi encontrada nos chamados "fluidos refrigerantes". O fluido CFC-12 (R12) era um dos mais usados até ser proibido pelo elevado poder destrutivo do ozônio atmosférico (encarregado de interceptar a maior parte das radiações ultravioletas). O fluido HCFC-22 (R22) consegue a combinação de ótimas características químicas e físicas a um elevado rendimento volumétrico, sendo usado nas instalações de climatização de baixa a médias potências. O fluido CFC 114, é usado nos compressores centrífugos nas instalações de climatização. Conhecidos na realidade doméstica como “gás de geladeira”, os agentes refrigerantes são substâncias que absorvem grande quantidade de calor ao passarem do estado líquido para o gasoso. A absorção depende de uma fonte extra para efetuar a troca de calor (água ou o ar) e ocorre justamente com a mudança de fase do fluido (calor latente). Inicialmente, os refrigerantes mais usados eram a amônia, o dióxido de carbono, dióxido de enxofre e cloreto de metila. Em 1931, o setor conheceu os refrigerantes de fluorcarbono, fabricados pela Dupont. No ano seguinte, o cientista Thomas Midgely Jr. inventou o refrigerante 12, mais conhecido como Freon 12, ou o famigerado clorofluorcarbono (CFC). Este tem a característica de apresentar reação endotérmica – capacidade de regular sua própria temperatura de acordo com a interação com o meio – quando expande ou quando vaporiza. Além disso, não é inflamável, não é explosivo, não é tóxico e não corrói metais. No final da década de 80, um golpe esfriou o entusiasmo dos adeptos do CFC e outros. Evidências científicas ligaram os produtos de fluorcarbonos a buracos na camada de ozônio, importante barreira ao excesso de radiação solar ultravioleta na superfície terrestre. Em pesquisa de refrigerantes substitutos, a categoria dos hidrocarbonetos (HC) resultam inócuos para o ambiente, mas são extremamente inflamáveis, portanto são pouco adaptados aos Sistemas civis; a categoria dos refrigerantes naturais (amônia) apresenta boas propriedades termodinâmicas, baixa inflamabilidade, mas elevada toxicidade, enfim à categoria dos hidro-fluorcaburetos (HFC) que não têm o impacto no ozônio estratosférico, mas aumenta a poluição do ar (quantidades de CO² no ar). O gás HFC 134a (R134a) substitui o CFC-12 na refrigeração civil, seu impacto é baixo no ozônio, mas não é adaptado para os sistemas de climatização. A substituição do R22 recorre-se ao fluido HFC 407C (R407c) ou ao HFC 410A (R410a), mas em ambos os casos são necessários uma conversão das instalações de refrigeração e de ar-condicionado. Além destes, pode ser usado também o fluido HFC 404A (R404A) que, porém, apresenta um potencial de superaquecimento global entre os mais elevados da categoria dos hidrofluorcarburetos. Portanto, os sistemas de climatização continuam utilizando o R 22, porém em processo extremamente controlado, ou seja, para ocorrer uma entropia (desordem no sistema), seria necessário uma ação voluntária no sentido de romper a tubulação, causando assim um vazamento.

23/11/2008

Máquinas e Equipamentos Agroindustriais Aula 05

Existem vários tipos de sistemas de resfriamento, refrigeração e congelamento. A nossa geladeira doméstica é um exemplo de sistema onde podemos aplicar os três métodos. Além disso, temos outros sistemas que apesar de variar de tamanho e diferentes monitoramentos, utiliza o mesmo procedimento da geladeira. O chiller, ou resfriador de líquidos, as câmaras frigoríficas, os túneis de resfriamento são largamente utilizados nos processos de conservação e armazenamento de alimentos. Os sistemas de refrigeração, resfriamento e congelamento de alimentos devem ter espaços distintos, apesar de concentrarem nomes e ações parecidas são de aplicações totalmente diferentes. A temperatura dos alimentos será o parâmetro de controle para cada operação. Esta deve oscilar entre a faixa de aquecimento (90º), para alimentos preparados, temperatura ambiente (35º) para alimentos in natura, temperatura de resfriamento (10º), faixa de transição para a refrigeração (entre 0º e 5º) e finalmente temperatura de congelamento (- 18º). Estas faixas de temperatura, evitam a proliferação de bactérias nos alimentos, além de conservarem a composição original inclusive do sabor, item essencial para o setor alimentício. No processo de pasteurização do leite o aquecimento e o resfriamento são realizados através de um chiller de placas, que ficam em contato direto com o produto. No processo de beneficiamento de carne bovina, depois de realizados os procedimentos operacionais na sala de abate, as meias carcaças seguem para as câmaras de resfriamento toda equipada com sistema Termográfico, respeitando a capacidade e permanecendo por no mínimo 24 horas à temperatura ambiente de no mínimo 2.1ºC (maturação sanitária) com o intuito de estabilizar o Ph e retardar a proliferação microbiana. Nos processos de conservação de alimentos através de resfriamento e congelamento, alguns pontos são observados, além da temperatura, seu principal parâmetro, a umidade, a velocidade do deslocamento e a constante renovação do ar também são levados em conta. Estes outros parâmetros irão conceber ao alimento suas condições normais ao voltarem à temperatura ambiente: cor, sabor, textura e cheiro devem estar o mais próximo do original quando oferecidos aos consumidores. O processo de descongelamento também deve ser cuidadoso, para evitar que a umidade do alimento aumente desproporcionalmente, o que certamente diminuiria parte das propriedades nutritivas do alimento.

20/11/2008

Máquinas e Equipamentos Seg do Trabalho Aula 06

As bombas são equipamentos deslocadores de fluidos imprescindíveis a qualquer processo industrial. Em todos os processos industriais encontramos a necessidade de transporte de fluidos de um lugar para outro. A bomba sozinha não é capaz de realizar este trabalho. Para efetuar bombeamento é necessário aplicar algum tipo de energia, que pode ter origem em um motor de combustão, como é o caso das bombas centrífugas utilizadas para combate a incêndios. A energia mais comum e mais aplicada nas indústrias é a elétrica, através de motores elétricos, onde as bombas são acopladas para receber movimento mecânico e realizar sua função final. Os tipos de bombas de maior aplicação na indústria são as centrífugas, por apresentarem um excelente desempenho no deslocamento de fluidos. Estas se classificam pelo rotor utilizado na operação. O rotor é o componente responsável pelo deslocamento e transporte do fluido. Para fluidos viscosos(grossos)e com partículas sólidas utilizamos rotores abertos, a fim de equalizar o bombeamento, evitando vibração no conjunto. Para fluidos menos viscosos, principalmente água, aplicamos rotores fechados, o que transfere ao conjunto uma excelente produção de bombeamento. As centrífugas podem ser monobloco como a da figura 1, também chamadas de motobombas ou montadas separadamente dos motores elétricos. O número de rotores de uma bomba irá caracterizar a classificação dos estágios das bombas, podendo ter desde um estágio( 1 rotor), ou vários estágios (vários rotores). Existem outros tipos de bombas para os mais diversos processos industriais. Bombas dosadoras, bombas de diafragma, bombas peristálticas, bombas submersas e submersíveis são exemplos de equipamentos para bombeamento. Na ligação entre motores e bombas estão os acoplamentos, elementos destinados a transferir energia mecânica gerada nos motores elétricos para as bombas. Estes elementos devem estar devidamente alinhados e bem fixados para evitar vibrações, o que certamente acarretará ruído e calor excessivo, resultante do atrito entre as peças. Outra observação importante concentra-se na proteção deste conjunto girante, pois é muito comum a retirada desta proteção durante a manutenção ou lubrificação , mas a frequência de reposição não é a mesma, resultando numa exposição ao risco de desprendimento de um parafuso ou parte do acoplamento durante o funcionamento. A ligação elétrica deve estar devidamente aterrada e protegida de contato com o fluido bombeado, para evitar o choque elétrico aos operadores e aos colaboradores da área de manutenção. As peças mecânicas devem estar dentro da especificação para cada equipamento, isto irá diminuir as possibilidades de desajustes. A capacidade de carga de bombeamento deve ser também obedecida de acordo com as recomendações do fabricante. Por fim, as bombas e motores elétricos devem estar bem fixados à sua base, para evitar desníveis e perdas de cargas provenientes do mau funcionamento dos conjuntos mecânicos. Um problema característico é chamado de “pé manco”, acontece quando deixam de fixar todos os parafusos dos motores e bombas à base, causando um deslocamento dos equipamentos no sentido do local sem fixação. Este procedimento transfere sobrecargas a todo o conjunto. As bombas são equipamentos que deslocam fluido com extremas pressões de carga. Portanto, é recomendável que no local de operação só estejam pessoas credenciadas e com experiência para agir em caso de emergência. A tubulação deve ser bem fixada e dentro das especificações de pressão e vazão. Deve-se ter cuidado com vazamentos do fluido bombeado, se o fluido for inflamável, as bombas devem ser dotadas de selo mecânico em sua vedação. Manobras de fluxo em altas pressões devem ser evitadas e é recomendável a utilização de válvulas de retenção nas linhas para evitar o golpe de aríete, choque extremamente brusco que prejudica seriamente equipamentos e linhas. Os compressores são equipamentos deslocadores de fluidos gasosos. A função principal dos compressores é de comprimir ar atmosférico, transformando-o em ar comprimido e armazenando este ar em vasos de pressão conhecidos como reservatórios. A operação de compressão de ar exige monitoramento constante dos sistemas. Cuidados com a condição de funcionamento dos pressostatos devem ser adotados para evitar problemas de sobrecarga nos vasos de pressão. O sistema deve ser constantemente purgados para manter a qualidade do ar comprimido. O movimento de acionamento mecânico é transferido ao compressor pelo motor elétrico através de polias e correias. Este acionamento deve estar dotado de uma proteção para evitar contatos com as partes rotativas dos conjuntos. Veja a seguir como funciona o compressor:

19/11/2008

Máquinas e Equipamentos Agroindustriais Aula 04

Propriedades termodinâmicas são características macroscópicas de um sistema, como: volume, temperatura, pressão. Estado termodinâmico pode ser entendido como sendo a condição em que se encontra a substância, sendo caracterizado pelas suas propriedades. Processo é uma mudança de estado de um sistema. O processo representa qualquer mudança nas propriedades da substância. Uma descrição de um processo típico envolve a especificação dos estados de equilíbrio inicial e final. Ciclo é a fase do processo onde o estado inicial e o estado final do sistema coincidem. Substância pura é qualquer substância que tenha composição química invariável e homogênea. Ela pode existir em mais de uma fase (sólida, líquida e gasosa), mas a sua composição química é a mesma em qualquer das fases. Uma propriedade termodinâmica de uma substância é qualquer característica observável desta substância. Um número suficiente de propriedades termodinâmicas independentes constitui uma definição completa do estado da substância. As propriedades termodinâmicas mais comuns são: temperatura (T), pressão (P), volume (V). Além destas propriedades termodinâmicas mais familiares, e que são mensuráveis diretamente, existem outras propriedades termodinâmicas fundamentais para a análise de transferência de calor, trabalho e energia, não mensuráveis diretamente, que são: energia interna (u), entalpia (h) e entropia (s). Energia Interna (u): São as energias que a matéria possui devido ao movimento de forças intermoleculares. Esta forma de energia pode ser decomposta em duas partes: a) Energia cinética interna ⇒ relacionada à velocidade das moléculas; b) Energia potencial interna ⇒ relacionada às forças de atração entre as moléculas. As mudanças na velocidade das moléculas são identificadas, macroscopicamente, pela alteração da temperatura da substância (sistema), enquanto que as variações na posição são identificadas pela mudança de fase da substância (sólido líquido ou vapor). Entalpia (h): Podemos definir esta propriedade termodinâmica como sendo o aproveitamento da energia gerada nas transformações ocorridas neste sistema. Entropia (s): Esta propriedade termodinâmica representa uma medida da desordem molecular da substância. O processo de compressão do fluido refrigerante é utilizado em sistemas de refrigeração como geladeiras, freezers, balcões frigoríficos e condicionadores de ar. A base desses sistemas está na compressão do fluido por um motocompressor, onde o ciclo se coincide. O processo começa quando o sistema passa de termostático (parado), para termodinâmico, aproveitando a energia interna do sistema através da entalpia, onde o fluido refrigerante através de suas características termodinâmicas começa a se deslocar do tubo capilar em estado liquefeito, para o evaporador onde uma diferença de diâmetro existente entre o capilar e o evaporador proporciona evaporação ao fluido. Durante essa etapa do processo, um bulbo contendo mercúrio já se encarregou de acionar o motocompressor, através de um circuito termoelétrico. Estando acionado, o motocompressor começa a agir como uma bomba, retirando todo o fluido em estado gasoso, que numa reação endotérmica absorve todo o calor do evaporador e de qualquer corpo ou substância que nele se encontre, deixando o ambiente refrigerado ciclicamente. Nesse ponto o fluido encontra-se com sua pressão e temperatura baixa e seu volume reduzido (transformação de um gás num ciclo reversível). Até quando atingem o interior da câmara de compressão do motocompressor, onde ocorre uma transformação adiabática (tão rápido que o fluido não troca calor com o meio), apenas absorve parte do calor gerado pelo trabalho eletromecânico, responsável pelo funcionamento do pistão de compressão. Após ser comprimido, o fluido ainda em estado gasoso, é forçado a sair da câmara de combustão, por uma tubulação de menor diâmetro, causando com isto, o aumento da pressão e da temperatura do fluido, consequentemente seu volume também sofrerá variação, aumentando consideravelmente. Quando o fluido gasoso superaquecido (reação exotérmica) chega ao condensador, todo o calor retirado do interior do evaporador é dissipado, ao trocar calor com o meio externo. Nas geladeiras essa troca e dissipação ocorrem de maneira natural, através da ventilação das aletas que ficam na parte de trás. Nos condicionadores de ar essa dissipação se dá de maneira forçada, através de um ventilador que expulsa o calor do condensador. Essa ação do calor latente transforma o fluido refrigerante em estado gasoso para estado liquefeito, através da formação de fluido condensado resultante da diferença de temperatura do fluido e o meio externo.

Leia também...

ATIVIDADES DE ESTUDO 1 – MECÂNICA E RESISTÊNCIA DOS MATERIAIS [RESOLVIDA]

QUESTÃO 1 Considere que você seja o responsável técnico em uma empresa que projeta estrutura metálicas, e precise avaliar um ponto específic...