30/01/2013

Sistema de classes dos parafusos de aço inoxidável


SISTEMA DE DESIGNAÇÃO DE CLASSES


A propriedade característica do aço inoxidável austenítico é que, diferentemente do aço carbono, ele não pode ser endurecido por tratamento térmico, mas somente por deformação a frio. Por este processo, o aço inoxidável austenítico tem suas propriedades mecânicas aumentadas consideravelmente.
Os materiais A1, A2 e A4 são divididos em três classes cada um: 50 - 70 - 80, dependendo do método de produção e dimensões.
O número da classe exprime 1/10 da resistência à tração em N/mm². Assim a classe 80 tem uma resistência à tração mínima de 800 N/mm².

Classe 50 - Material mole obtido por deformação a quente e raramente utilizado na fabricação de fixadores.

Classe 70 - A classe mais comumente usada para todos os fixadores deformados a frio.Esta é a classe padrão e a normalmente fornecida, a não ser que haja especificação em contrário por parte do cliente

Classe 80
 - A classe com maiores propriedades mecânicas devido a uma deformação extra a frio que coloca o material ao nível aço carbono 8.8, tornando-os assim intercambiáveis, sem a necessidade de qualquer adaptação.

Parafuso classe A2 - 70





AÇO INOXIDÁVEL






PARAFUSOS


PORCAS



grupo


material


classe


diâmetro
d
resistência à
tração

Rm     2)
N/mm², min.
limite de escoamento
de 0,2%
Rp0,2      2)
N/mm², min.
alongamento


Al       3)
 mm, min
carga de prova


Sp
N/mm²











50

M39

500

210

0,6d

500

austenítico

A1, A2, A4

70   1)

M20

700

450

0,4d

700




M20 / M30

500

250

0,4d

500



80   2)

M20

800

600

0,3d

800


1) Estes valores se aplicam somente para comprimentos até 8 x d. Nos materiais A2 e A4 a classe mais comum é a 70.
2) Valores calculados em termos da área da rosca onde é aplicada a carga de tração.
3) O alongamento na fratura deve ser determinado no próprio parafuso com comprimento 3 x d e não em corpo de prova preparado.

Resistência à tração é a relação entre a máxima carga de tração aplicada e a área original da secção transversal do material.

Limite de escoamento é a carga de tração na qual deixa de existir proporcionalidade entre a carga aplicada e a deformação ocorrida.

Limite de escoamento de 0,2% é utilizado para classes de resistência maiores onde o limite de escoamento convencional é difícil der ser determinado, e é a carga de tração na qual, após o cessamento da mesma, o material apresenta uma deformação plástica de 0,2%.

Alongamento é a variação do comprimento original do corpo de prova, após a fratura ocorrida no teste de tração. Normalmente é expresso em valor percentual.

Carga de Prova é uma carga pré-determinada, geralmente um múltiplo da carga de serviço, à qual o material é submetido antes de ser admitido para uso.

Fonte: Dapco - Fixadores Inoxidáveis

18/01/2013

O motor-proteína para robôs



Os biólogos gostam de falar em "blocos fundamentais da vida", pequenas moléculas que estão na base do funcionamento de todos os seres vivos. Infelizmente, construir um ser vivo artificial é mais complicado do que montar peças que se encaixem umas nas outras. Mas a metáfora é válida o suficiente para permitir a construção de robôs a partir de alguns blocos fundamentais, peças básicas que podem ser usadas para construir robôs diferentes ou com funções diferentes. Melhor ainda, esses robôs reconfiguráveis poderão mudar seu próprio formato em resposta a alterações na tarefa a ser desempenhada ou no ambiente ao seu redor.

Ara Knaian e seus colegas do MIT, nos Estados Unidos, gostam tanto da metáfora biológica que batizaram seus “blocos fundamentais da robótica de “mili-moteínas”. Mili é uma referência à dimensão milimétrica de cada peça, enquanto moteína refere-se a um dispositivo motorizado inspirado em uma proteína. Assim como as proteínas se dobram para formarem novelos complexos com funções muito específicas, o minúsculo motor pode ser o precursor de uma geração de futuros equipamentos que se dobrem sobre si mesmos para assumir qualquer formato imaginável.


Para dar fundamento ao seu conceito, os pesquisadores tiveram que inventar um novo tipo de motor: um motor que fique fixo na posição esteja ele ligado ou desligado. A equipe chamou sua solução de motor eletropermanente.

Moteína: o motor-proteína dos robôs
Os pesquisadores tiveram que inventar um novo tipo de motor: um motor que fique fixo na posição esteja ele ligado ou desligado. [Imagem: Knaian et al.]








O motor usa um forte ímã permanente acoplado a um eletroímã - um ímã que é ligado ou desligado pela passagem de uma corrente elétrica. Os dois magnetos foram projetos de forma que seus campos magnéticos somem-se ou se cancelem o que permite que a força do ímã permanente possa ser "desligada" à vontade com o acionamento do eletroímã. "Eles não usam energia nem no estado ligado e nem no estado desligado. 

Eles usam energia apenas para mudar de um estado para o outro," explica Knaian. Desta forma, o robô pode assumir um formato e manter-se fixo nele, uma estratégia que exige um circuito de controle mais simples do que outras abordagens de robôs polimórficos já desenvolvidas - e, por decorrência, consome menos energia. O protótipo do robô, construído com apenas quatro moteínas - uma espécie de robô em cadeia - assume formatos como um periscópio, uma hélice, ou "L" ou um "U". A adição de mais módulos permitirá a execução de formatos mais complexos. "Isto nos coloca mais próximos da ideia de matéria programável, onde programas de computador e materiais juntam-se para formar qualquer tipo de matéria cujo formato e função possam ser programados, algo não muito diferente da biologia," disse o professor Hod Lipson, que já criou também sua versão de um "robô-biólogo". 

No estágio atual, a informação para a reconfiguração do robô fica contido em um computador à parte, e não no próprio módulo, embora esse seja o objetivo de longo prazo dos pesquisadores. Em última instância, um robô reconfigurável deverá ser "pequeno, barato, durável e forte. Ainda não é possível ter tudo isto junto ao mesmo tempo. Mas a biologia é a comprovação de que é possível," disse Knaian. Uma vez demonstrado o conceito, na verdade as moteínas poderão ter qualquer dimensão, desde "nanopeças" para fabricar micro ou nano-robôs, até o tamanho de um ser humano, para a criação de equipamentos industriais de grande porte.


Fonte: Site Inovação Tecnológica 

17/01/2013

Chave de fenda sônica aperta vórtices da física


Físicos da Universidade de Dundee, na Escócia, criaram um motor movido por ultra-sons. Mike MacDonald e seus colegas batizaram o dispositivo de "chave de fenda sônica", embora a máquina nem de perto lembre uma chave de fenda. Por trás de seu funcionamento, contudo, está uma teoria fundamental da física, além de um grande potencial para a fabricação de instrumentos mais aprimorados e mais precisos.

Esta é a primeira vez que se usa ultra-sons para girar objetos, e não apenas para empurrá-los - e a diferença é significativa. Os cientistas usaram um conjunto de geradores de ultra-som para formar um feixe com ondas em formato de hélice, um vórtice ultra-sônico, que possui momento suficiente para empurrar o objeto e, ao mesmo tempo, fazê-lo girar.

O objeto é um disco de borracha de 10 centímetros de diâmetro. "Este experimento não apenas confirma uma teoria fundamental da física, como também demonstra um novo nível de controle sobre feixes de ultra-sons, que poderá ser aplicado a cirurgias não-invasivas, carreamento controlado de medicamentos e manipulação ultra-sônica de células," disse MacDonald.

Chave de fenda sônica aperta laços da física

A teoria a que o pesquisador se refere é válida tanto para o som quanto para a luz, mas nunca havia sido demonstrada em um experimento único. A teoria estabelece que a relação momento angular/energia em um vórtice é igual à relação entre o número de hélices de onda entrelaçadas e a frequência do feixe.

Usando um transdutor de ultra-som com 1.000 elementos, os cientistas conseguiram gerar estruturas de ondas parecidas com o DNA, só que com muito mais "hélices". Esses feixes alcançaram potência suficiente para levitar o disco de borracha de 90 gramas e fazê-lo girar na água.


 Fonte: Site Inovação Tecnológica

15/01/2013

Nissan vai lançar carro com direção eletrônica



A montadora japonesa Nissan anunciou que vai lançar em 2013 o primeiro carro com a tecnologia steer-by-wire. Em lugar de conectar o volante às rodas por meio de uma ligação mecânica - a famosa barra de direção - no novo sistema o comando é transmitido do volante para as rodas eletronicamente. Nas rodas, os comandos são interpretados e usados para acionar motores elétricos que fazem as rodas virarem ou retornarem à posição original. Segundo a empresa, o sistema transmite a intenção do motorista para as rodas a uma velocidade superior à da conexão mecânica.

O próprio sistema se encarrega de fazer pequenos ajustes nas rodas em decorrência de irregularidades no piso, além de deixar o motorista livre das trepidações no volante. A direção eletrônica conta ainda com a ajuda extra de uma câmera, instalada à frente do espelho retrovisor interno, que auxilia o motorista a manter o carro estável na rota, evitando que ele dance na pista por movimentos sutis no volante.

Segundo a Nissan "esse sistema é uma inovação em termos mundiais, uma tecnologia que melhora a estabilidade do veículo fazendo pequenos ajustes de ângulo, de forma que o veículo monitora a via para manter-se na faixa em que está viajando". O sistema também consegue anular balanços no carro gerados por ventos laterais, naturais ou gerados pela passagem de outros carros. Tudo é feito automaticamente, sem que o motorista sinta no volante os ajustes que o sistema vai fazendo nas rodas.

O sistema eletrônico possui três unidades de processamento e um sistema de detecção de falhas que passa automaticamente o controle para o próximo processador se houve alguma falha naquele que estiver controlando a direção. Se a bateria falhar, e todo o sistema eletrônico deixar de funcionar, uma "embreagem" mecânica conecta o volante às rodas - um sistema parecido com os freios de elevadores -, e o carro passa a ser dirigido mecanicamente, na forma tradicional.

Embora dê segurança ao motorista, o sistema de backup mecânico aumenta o peso do conjunto, eventualmente anulando os ganhos de economia de combustível que o sistema deve proporcionar. Mas, na avaliação da empresa, é importante para que os consumidores ganhem confiança na tecnologia. A direção eletrônica, ou steer-by-wire, é parte do conceito drive-by-wire, onde todos os comandos do carro passam a ser feitos eletronicamente.


Nissan vai lançar carro com direção eletrônica
O sistema anula balanços no carro gerados por ventos laterais e por irregularidades na pista, sem que o motorista sinta nada no volante.[Imagem: Nissan/SIT]

Fonte: Site Inovação Tecnológica

As Dez Mais Lidas...

Leia também...

AV1 - DESENHO TÉCNICO PROJETIVO [ATIVIDADE RESOLVIDA]

1) Na legenda de desenho técnicos são encontradas duas figuras que representam o método de projeção ortográfica e para a sua elaboração são ...