26/04/2009

Maior telescópio solar do mundo começa a ser construído


Foi dada a largada para a construção do maior telescópio solar do mundo, o ATST (Advanced Technology Solar Telescope). Quando ele estiver pronto, em 2012, os cientistas finalmente terão uma ferramenta capaz de ajudar a compreender os fenômenos de larga escala que ocorrem no Sol, como nascem, vivem e morrem as partículas do vento solar e como a atividade solar impacta a Terra.
Com um sistema óptico de 4 metros de diâmetro, o ATST será o primeiro observatório de grande abertura projetado para observar o Sol, permitindo observações com uma resolução sem precedentes. A grande abertura é necessária para resolver espacialmente as escalas fundamentais dos processos que ocorrem na atmosfera solar. Simulações mostram que algumas estruturas magnéticas que acionam os processos de larga escala na superfície e na corona solar podem ser muito pequenas, com cerca de 35 quilômetros de diâmetro. O novo telescópio solar conseguirá identificar estruturas com essas dimensões.
O ATST será inaugurado no ano em que as primeiras observações das manchas solares completarão 400 anos - Galileu identificou-as pela primeira vez em 1612. Só em 1908 George Ellery Hale associou as manchas solares com os fortíssimos campos magnéticos do Sol. O ATST está sendo construído em Haleakala, no estado norte-americano do Havaí.


24/04/2009

HIDRÁULICA: COMO FUNCIONA O FREIO AUTOMOTIVO - AULA 2

O típico sistema de freio, é composto de freios a disco na parte dianteira e freios a tambor ou disco na parte traseira, conectados por um conjunto de tubos e mangueiras, que interligam o freio de cada roda ao cilindro mestre. É comum que acessórios estejam conectados ao sistema de freio, tais como o freio de estacionamento, o servo freio e o sistema antibloqueio (ABS). Quando acionamos o pedal de freio, empurramos um pistão no interior do cilindro mestre, que força o óleo hidráulico (fluido de freio), através de tubos e mangueiras para atuar em cada roda. Como o fluido hidráulico não pode ser comprimido, empurrar o líquido através de uma tubulação, seria o mesmo que empurrar uma barra de aço através de uma tubulação. Contudo, a vantagem está na flexibilidade do líquido fluir através de flexões e curvas, chegando até o seu destino exatamente com a mesma pressão que iniciou o movimento. Para o perfeito funcionamento do sistema, é fundamental que não existam bolhas de ar no circuito hidráulico. Afinal, como o ar pode ser comprimido, isto torna o pedal esponjoso e reduz severamente a eficiência da frenagem. No sistema de freio a disco, o fluido é forçado do cilindro mestre em direção a pinça, onde pressionará o pistão, que impulsionará as pastilhas de freio contra o disco unido à roda, estabelecendo a frenagem. Este processo é similar ao sistema de freio da bicicleta, onde duas pastilhas de borracha friccionam de encontro à borda da roda. No sistema de freio a tambor, o fluido é forçado do cilindro mestre em direção ao cilindro de roda, que aciona as sapatas de freio pressionando as lonas de fricção de encontro ao tambor unido à roda estabelecendo a frenagem. Participe desta aula, faça um comentário!

22/04/2009

HIDRÁULICA: COMO FUNCIONA O FREIO AUTOMOTIVO - AULA 1

A aplicação da hidráulica vem sendo pesquisada e aperfeiçoada desde que Blaise Pascal, físico francês, estudou pressões hidráulicas e descobriu os fundamentos denominados "LEIS DE PASCAL". Uma destas leis diz o seguinte: "A pressão exercida sobre um líquido em câmara selada transmite-se por igual em todas as direções”. O funcionamento do freio automotivo tem como fundamento a "Lei de Pascal", ao utilizar a força aplicada no pedal, transmitida por um fluido para acionar o sistema de freios. O freio atua transformando a energia cinética do veículo, convertendo o movimento em calor através do atrito. Ou seja, o motor desenvolve uma potência que retira o veículo do estado de repouso e impulsiona-o ao movimento, essa potência precisa ser total ou parcialmente transformada, quando se deseja diminuir ou anular a velocidade do veículo. O moderno formato do sistema de freio automotivo, vem sendo desenvolvido há mais de 100 anos e tornou-se extremamente seguro e eficiente... Continua na próxima aula. Participe desta aula, faça um comentário!

17/04/2009

Tecnologia - Um pomar que manda email pedindo água

As árvores não falam. Mas algumas em Israel começaram a mandar mensagens. Técnicos do país em irrigação de plantações agora inventaram um dispositivo que, instalado num pomar, avisa – por email até - quando está na hora de aguar a planta de novo. Se não for suficiente, pode-se programá-lo para puxar água da torneira e molhar as plantas sozinho.

A mágica funciona assim: com três sondas espetadas no tronco da árvore, é possível medir a corrente elétrica que passa por ele, e a partir disso verificar a quantidade de água presente na planta. Os aparelhos existentes até agora só mediam a umidade do solo, e isso tornava imprecisa a medição da umidade no interior da planta. A foto acima mostra um aparelho ligado por fios ao tronco de uma árvore. Os donos da ideia, os pesquisadores Eran Raveh e Arieh Nadler, do Instituto Volcani de Agricultura, descobriram isso sem querer, durante um trabalho com outro objetivo.

Por enquanto, a inovação ainda chegou às fazendas. Na estimativa dos criadores, o dispositivo vai levar três ou quatro anos para virar produto à venda nas lojas. Os israelenses têm pressa porque vivem em escassez de água doce e pagam caro por ela. Raveh acredita que o dispositivo – que ainda não tem nome – iria proporcionar uma economia de água de 30% a 40% nas plantações – e ainda evitar que as plantas recebessem água demais. Uma sonda seria suficiente para medir a umidade em 500 árvores.

O custo da novidade deverá ser baixo e seu uso, simples. Na opinião dos pesquisadores, só assim ela faz sentido. Produtores de manga, banana e vinho de Israel já manifestaram interesse pelo dispositivo. No futuro, eles poderão programar o aparelho para enviar os dados ao agricultor via SMS, email ou fax, ou direto para uma torneira automática.

TERREMOTOS E PLACAS TECTÔNICAS

  • As placas tectônicas são subdivisões da crosta terrestre que se movimentam de forma lenta e contínua sobre o manto, podem aproximar-se ou afastarem-se umas das outras provocando abalos na superfície como terremotos e atividades vulcânicas.
  • Tais movimentos ocorrem pelo fato do interior terrestre ser bastante aquecido fazendo com que as correntes de convecção (correntes circuladas em grandes correntes) determinem a forma de seus movimentos.
  • Quando as correntes são convergentes elas se aproximam e se chocam sendo motivadas pela menor densidade das placas oceânicas em relação às placas continentais, sendo que a placa oceânica é engolida pela continental.
  • Porém quando são divergentes elas se afastam fazendo com que as placas se movimentem em direção contrária, perdendo calor.
  • As placas convergentes se colidem de forma que uma se coloca embaixo da outra e então retorna para a astenosfera. As placas divergentes se afastam pela criação de uma nova crosta oceânica, pelo magma vindo do manto.
  • A astenosfera é a camada que se situa logo abaixo da litosfera. Como sua temperatura é mais elevada, possui menor rigidez sofrendo deformação quando sujeita a esforços.

16/04/2009

Aço inoxidável substitui platina na produção de hidrogênio

A platina é um catalisador estupendo, mas seu alto custo tem inibido o desenvolvimento de novas tecnologias de combustíveis, assim como o uso em larga escala de sistemas antipoluição.

Catalisador de aço inoxidável

Agora, pesquisadores da Universidade da Pensilvânia, nos Estados Unidos, descobriram uma forma de substituir a platina pelo muito mais barato aço inoxidável no papel de catalisador em suas células eletrolíticas microbianas produtoras de hidrogênio.

"Catodos de aço inoxidável podem produzir hidrogênio em volumes e numa eficiência similares aos que podem ser obtidos com os catalisadores de platina," diz o Dr. Bruce E. Logan, que é professor de engenharia ambiental.

As escovas utilizadas pela equipe do Dr. Logan foram feitas com fios de aço inoxidável 304 dispostos ao longo de um núcleo espiral também de aço inoxidável, tudo fabricado em um equipamento industrial tradicional.

Medindo 2,5 cm de comprimento por 2,5 cm de diâmetro, as escovas têm uma área superficial de de 310 centímetros quadrados.

Células eletrolíticas microbianas

Para produzir hidrogênio a partir de células eletrolíticas microbianas que usam materiais orgânicos, é necessário antes injetar uma pequena tensão elétrica no sistema. Ainda que a célula produza mais energia do que essa energia inicial necessária para induzir a reação, sem ela a célula não produz hidrogênio.

Aplicando uma tensão de 0,6 volts, os pesquisadores produziram cerca de 5,5 ampere em um volume de 28 litros (1 pé cúbico) utilizando os catodos de aço inoxidável.

É necessário usar um volume maior de aço inoxidável para fazer as escovas do que o volume de platina que seria usado em seu lugar, mas a diferença de preço entre os dois materiais torna as escovas de aço inoxidável cinco vezes mais baratas do que os catodos de platina.

Agora os pesquisadores vão tentar resolver o problema que resta: as escovas tendem a aprisionar minúsculas bolhas de hidrogênio, que ficam estacionadas por muito tempo no mesmo local, o suficiente para o desenvolvimento de microorganismos que consomem o gás, reduzindo o rendimento total da célula.

Fonte: Inovação Tecnológica.

LEIA TAMBÉM...

PASSO A PASSO PARA ELABORAÇÃO DO TCC UCA

  - Primeiramente,  abra o modelo  proposto na disciplina, é importante ter ciência do modelo de trabalho que deverá redigir.  Nosso modelo ...