18/01/2013

O motor-proteína para robôs



Os biólogos gostam de falar em "blocos fundamentais da vida", pequenas moléculas que estão na base do funcionamento de todos os seres vivos. Infelizmente, construir um ser vivo artificial é mais complicado do que montar peças que se encaixem umas nas outras. Mas a metáfora é válida o suficiente para permitir a construção de robôs a partir de alguns blocos fundamentais, peças básicas que podem ser usadas para construir robôs diferentes ou com funções diferentes. Melhor ainda, esses robôs reconfiguráveis poderão mudar seu próprio formato em resposta a alterações na tarefa a ser desempenhada ou no ambiente ao seu redor.

Ara Knaian e seus colegas do MIT, nos Estados Unidos, gostam tanto da metáfora biológica que batizaram seus “blocos fundamentais da robótica de “mili-moteínas”. Mili é uma referência à dimensão milimétrica de cada peça, enquanto moteína refere-se a um dispositivo motorizado inspirado em uma proteína. Assim como as proteínas se dobram para formarem novelos complexos com funções muito específicas, o minúsculo motor pode ser o precursor de uma geração de futuros equipamentos que se dobrem sobre si mesmos para assumir qualquer formato imaginável.


Para dar fundamento ao seu conceito, os pesquisadores tiveram que inventar um novo tipo de motor: um motor que fique fixo na posição esteja ele ligado ou desligado. A equipe chamou sua solução de motor eletropermanente.

Moteína: o motor-proteína dos robôs
Os pesquisadores tiveram que inventar um novo tipo de motor: um motor que fique fixo na posição esteja ele ligado ou desligado. [Imagem: Knaian et al.]








O motor usa um forte ímã permanente acoplado a um eletroímã - um ímã que é ligado ou desligado pela passagem de uma corrente elétrica. Os dois magnetos foram projetos de forma que seus campos magnéticos somem-se ou se cancelem o que permite que a força do ímã permanente possa ser "desligada" à vontade com o acionamento do eletroímã. "Eles não usam energia nem no estado ligado e nem no estado desligado. 

Eles usam energia apenas para mudar de um estado para o outro," explica Knaian. Desta forma, o robô pode assumir um formato e manter-se fixo nele, uma estratégia que exige um circuito de controle mais simples do que outras abordagens de robôs polimórficos já desenvolvidas - e, por decorrência, consome menos energia. O protótipo do robô, construído com apenas quatro moteínas - uma espécie de robô em cadeia - assume formatos como um periscópio, uma hélice, ou "L" ou um "U". A adição de mais módulos permitirá a execução de formatos mais complexos. "Isto nos coloca mais próximos da ideia de matéria programável, onde programas de computador e materiais juntam-se para formar qualquer tipo de matéria cujo formato e função possam ser programados, algo não muito diferente da biologia," disse o professor Hod Lipson, que já criou também sua versão de um "robô-biólogo". 

No estágio atual, a informação para a reconfiguração do robô fica contido em um computador à parte, e não no próprio módulo, embora esse seja o objetivo de longo prazo dos pesquisadores. Em última instância, um robô reconfigurável deverá ser "pequeno, barato, durável e forte. Ainda não é possível ter tudo isto junto ao mesmo tempo. Mas a biologia é a comprovação de que é possível," disse Knaian. Uma vez demonstrado o conceito, na verdade as moteínas poderão ter qualquer dimensão, desde "nanopeças" para fabricar micro ou nano-robôs, até o tamanho de um ser humano, para a criação de equipamentos industriais de grande porte.


Fonte: Site Inovação Tecnológica 

17/01/2013

Chave de fenda sônica aperta vórtices da física


Físicos da Universidade de Dundee, na Escócia, criaram um motor movido por ultra-sons. Mike MacDonald e seus colegas batizaram o dispositivo de "chave de fenda sônica", embora a máquina nem de perto lembre uma chave de fenda. Por trás de seu funcionamento, contudo, está uma teoria fundamental da física, além de um grande potencial para a fabricação de instrumentos mais aprimorados e mais precisos.

Esta é a primeira vez que se usa ultra-sons para girar objetos, e não apenas para empurrá-los - e a diferença é significativa. Os cientistas usaram um conjunto de geradores de ultra-som para formar um feixe com ondas em formato de hélice, um vórtice ultra-sônico, que possui momento suficiente para empurrar o objeto e, ao mesmo tempo, fazê-lo girar.

O objeto é um disco de borracha de 10 centímetros de diâmetro. "Este experimento não apenas confirma uma teoria fundamental da física, como também demonstra um novo nível de controle sobre feixes de ultra-sons, que poderá ser aplicado a cirurgias não-invasivas, carreamento controlado de medicamentos e manipulação ultra-sônica de células," disse MacDonald.

Chave de fenda sônica aperta laços da física

A teoria a que o pesquisador se refere é válida tanto para o som quanto para a luz, mas nunca havia sido demonstrada em um experimento único. A teoria estabelece que a relação momento angular/energia em um vórtice é igual à relação entre o número de hélices de onda entrelaçadas e a frequência do feixe.

Usando um transdutor de ultra-som com 1.000 elementos, os cientistas conseguiram gerar estruturas de ondas parecidas com o DNA, só que com muito mais "hélices". Esses feixes alcançaram potência suficiente para levitar o disco de borracha de 90 gramas e fazê-lo girar na água.


 Fonte: Site Inovação Tecnológica

As Dez Mais Lidas...

Leia também...

AP1 FUNDAMENTOS JURÍDICOS [RESOLVIDA]

Acerca do que foi aprendido em aula sobre Licitação, analise a situação: 1- Uma Universidade Estadual, que é uma autarquia especial, em razã...