09/12/2010

PROCESSOS DE PRODUÇÃO DO ALUMÍNIO - PARTE 1


PROCESSOS DE PRODUÇÃO DO ALUMÍNIO

Laminação

É um processo de transformação mecânica que consiste na redução da seção transversal por compressão do metal, por meio da passagem entre dois cilindros de aço ou ferro fundido com eixos paralelos que giram em torno de si mesmos. Esta seção transversal é retangular e referem-se a produtos laminados planos de alumínio e suas ligas, compreendendo desde chapas grossas com espessuras de 150 mm, usadas em usinas atômicas, até folhas com espessura de 0, 005 mm, usadas em condensadores. Existem dois processos tradicionais de laminação de alumínio: laminação a quente e laminação a frio. Atualmente, a indústria também se utiliza a laminação contínua.

FIGURA 1 - Processo de laminação do alumínio


Os principais tipos de produtos laminados são: chapas planas ou bobinadas, folhas e discos. Esses semimanufaturados têm diversas aplicações em setores como transportes (carrocerias para ônibus, equipamentos rodoviários, elementos estruturais, etc.), construção civil (telhas, fachadas, calhas, rufos, etc.), embalagens (latas, descartáveis e flexíveis) e bens de consumo (panelas, utensílios domésticos, etc.).

Laminação a Quente

Promove reduções da seção transversal com o metal a uma temperatura mínima de aproximadamente 350°C (igual à temperatura de recristalização do alumínio). A ductilidade do metal a temperaturas desta ordem é máxima e, nesse processo ocorre à recristalização dinâmica na deformação plástica. O processo transcorre da seguinte forma:
   
1º - Uma placa (matéria-prima inicial), cujo peso varia de alguns quilos até 15 toneladas, é produzida na refusão, por meio de fundição semicontínua, em molde com seção transversal retangular. (Este tipo de fundição assegura a solidificação rápida e estrutura metalúrgica homogênea). A placa pode sofrer uma usinagem superficial (faceamento) para remoção da camada de óxido de alumínio, dos grãos colunares (primeiro material solidificado) e das impurezas provenientes da fundição.
   
2º - Posteriormente, a placa é aquecida até tornar-se semiplástica.
   
3º - A laminação a quente se processa em laminadores reversíveis duplos (dois cilindros) ou quádruplos (dois cilindros de trabalho e dois de apoio ou encosto).

4º - O material laminado é deslocado, a cada passada, por entre os cilindros, sendo que a abertura dos mesmos define a espessura do passe. A redução da espessura por passe é de aproximadamente 50% e depende da dureza da liga que está sendo laminada. No último passe de laminação, o material apresenta-se com espessura ao redor de 6 mm, sendo enrolado ou cortado em chapas planas, constituindo-se na matéria-prima para o processo de laminação a frio.

FIGURA 2 - Processo de laminação a quente do alumínio


Concepções mais modernas do processo de laminação a quente podem apresentar em linha, após o desbastamento, em um laminador reversível, uma cadeia de vários laminadores, denominada de "tandem", que reduz a espessura do material para cerca de 2 mm.
Uma unidade de laminação a quente contém: laminador, refusão (unidade de fundição de placas), fornos de pré-aquecimento para placas, tratamentos térmicos de homogeneização (distribuição mais homogênea dos elementos micro constituintes químico-metalúrgicos), tesouras rotativas e guilhotinas para cortes laterais e longitudinais do material laminado, serras para cortes das extremidades e faceadeira para usinagem das superfícies. 

Fonte: ABAL

06/12/2010

Características físico-químicas do Alumínio


Características físico-químicas

  • Propriedades Mecânicas
As propriedades mecânicas são determinadas por ensaios rotineiros de amostras selecionadas como sendo representativas do produto. Estes ensaios mecânicos são normalmente destrutivos de modo que não devem ser efetuados em produtos acabados, pois alteram suas condições de funcionalidade. Obtêm-se corpos de prova de amostras que tenham sido elaboradas do mesmo modo que o produto, exceto no caso de peças fundidas e forjadas. Os ensaios de peças fundidas são feitos em corpos-de-prova do mesmo vazamento do metal da peça fundida e elaborados ao mesmo tempo. Com as peças forjadas, os ensaios, geralmente, são feitos em pedaços cortados do mesmo metal da peça. Os valores das propriedades mecânicas podem dividir-se em dois grupos: 



  - Valores garantidos: Parâmetros mínimos estabelecidos pelas especificações;



  - Valores típicos:Obtidos por meio de dados estatísticos propiciados por ensaios rotineiros, que garantem que o material obedece às especificações. 
  • Limite de Resistência a Tração
É a máxima tensão que o material resiste antes de haver sua ruptura. Calcula-se dividindo a carga máxima (em quilogramas) aplicada durante o ensaio, pela seção transversal em milímetros quadrados do corpo-de-prova. Para o alumínio puro recozido, essa razão é de aproximadamente 48 MPa (4,9 kg/mm2). O valor aumenta em função da liga, do trabalho a frio e do tratamento térmico (quando possível).
  • Limite de Escoamento
Consiste na tensão em que o material começa a deformar-se plasticamente e que para o alumínio é de 0,2% do comprimento original medido em um corpo-de-prova normal. É importante definir este grau de deformação permanente porque as ligas de alumínio não possuem limite de escoamento tão pronunciado como a maioria dos aços. O limite do alumínio puro é de aproximadamente 12,7 Mpa (1,3 kg/mm2).
  • Alongamento
O alongamento é expresso em porcentagem relativamente ao comprimento original medido em um corpo de prova normal e é calculado pela diferença entre os pontos de referência, antes e depois do ensaio de tração. Esse alongamento indica a ductilidade do metal ou da liga. Quanto mais fino o corpo-de-prova, menor será o alongamento e vice-versa.
  • Dureza
Define-se como a medida da resistência de um metal à penetração. Existem várias maneiras de se determinar a dureza de um material. Para os metais, os mais comuns são os métodos de Brinell, Vickers e Rockwell. Não existe uma relação direta entre o valor da dureza e as propriedades mecânicas das várias ligas de alumínio. Os elementos de liga aumentam em muito sua resistência com o alumínio, assim como o tratamento térmico e o endurecimento pelo trabalho a frio. Entretanto a dureza é significativamente mais baixa do que a maioria dos aços.
  • Módulo de Elasticidade
O módulo de elasticidade do alumínio é de 7030 kg/mm2. A adição de outros materiais nas ligas não altera esse valor consideravelmente, que pode chegar a até 7500 kg/mm2. Portanto, o índice do alumínio representa um terço do módulo de elasticidade do aço. Essa propriedade dá ao alumínio a vantagem de dar às estruturas de alumínio uma elevada capacidade de amortecer golpes e reduzir as tensões produzidas pela variação da temperatura.
  • Tensão de Fadiga
Quando uma tensão oscilante é aplicada por certo número de vezes sobre um mesmo material, mesmo que os impactos tenham força inferior ao seu limite de resistência à tração, é previsível uma falha por fadiga. Em muitas ligas de alumínio não há um limite inferior de tensão abaixo do qual a fadiga nunca possa ocorrer, mas quanto menor a tensão, maior o número de ciclos necessários para produzir a falha. No alumínio, em testes normais, o limite de resistência chega a 50 milhões de inversão de tensão e pode variar de 25% a 50% da tensão de ruptura, conforme a liga.
  • Limites de Temperatura
O alumínio puro funde a 660ºC e várias ligas possuem um ponto de fusão inferior a esse. O metal puro e muitas ligas perdem um pouco a sua resistência, ficando sujeito a uma lenta deformação plástica, chamada de fluência, se permanecer sob tensão por longos períodos em temperaturas acima de 200ºC. Por outro lado, ligas feitas para serviços em altas temperaturas, como às usadas em pistões, retêm suas propriedades adequadamente, funcionando satisfatoriamente dentro da faixa de temperatura de trabalho requerida. Quando exposto a temperaturas abaixo de zero, o alumínio não se torna frágil. Sua resistência aumenta sem perder a ductilidade. Esta é a característica que leva uma liga de AlMg ser escolhida para a construção de tanques soldados para armazenamento de gás metano liquefeito, em temperaturas de –160ºC. Saiba mais sobre o Alumínio!

As Dez Mais Lidas...

Leia também...

PORTFÓLIO - Química e Ciências dos Materiais [NOTA MÁXIMA]

  Relatório de Aula Prática - Química e Ciências dos Materiais Observar por meio de alguns testes de propriedades físicas o comportamento do...