- Braços de robôs são freqüentemente descritos como tendo um certo número de graus de liberdade ou um certo número de eixos de movimento. Em robótica , o número de graus de liberdade é o número de movimentos distintos que o braço pode realizar. Normalmente o número de graus de liberdade iguala-se ao número de juntas, de forma que um robô de cinco graus de liberdade possui cinco juntas, e um robô com seis eixos tem seis juntas.
- A noção de graus de liberdade tem limites definidos. Por exemplo, uma junta não possui apenas uma direção de movimento, mas também limites a este movimento. Essa faixa de movimento permitido, que não tem nada a ver diretamente com graus de liberdade, é muito importante. Por exemplo, quando seguramos uma bola de tênis na mão, a seguramos mantendo a palma da mão em contato com ela. Isto ocorre porque as juntas de nossos dedos só dobram na direção da palma da mão e não em direção às costas desta.
- Caso nossas juntas tivessem uma faixa de movimento que lhes permitisse dobrar nas duas direções, seríamos capazes de pegar uma bola de tênis tanto com a palma como com as costas da mão. Assim, usamos os graus de liberdade adicionais das juntas de nossos punhos, cotovelo e ombro para mover nossa mão de tal forma que a palma fique de frente para a bola. Portanto ter mais juntas (punho, cotovelo e ombro) e em conseqüência mais graus de liberdade, ajuda-nos a compensar o fato de ter uma faixa de movimentos um tanto limitada em nossos dedos.
- Um robô precisa de apenas dois ou três graus de liberdade para ser útil, mas às vezes mais que seis graus são necessários para estendê-lo a realizar manobras, como, por exemplo, no interior de um automóvel.
Pesquisar este blog
ORION1
19/02/2012
Graus de Liberdade dos Braços Robóticos
08/02/2012
Helicópteros com lâminas-barbatana de baleias
Engenheiros alemães foram buscar inspiração nas baleias para criar helicópteros mais rápidos e mais fáceis de manobrar. Os helicópteros devem sua capacidade de decolar e pousar verticalmente ao seu rotor principal, mas isso também tem desvantagens aerodinâmicas.
O fluxo de ar sobre a lâmina do rotor que está se movendo para trás cria turbulência, perda relativa de sustentação e exerce grandes forças sobre o rotor como um todo. Isto aumenta o arrasto aerodinâmico e submete todo o conjunto a uma carga maior do que o necessário - os passageiros também sentem tudo isso na forma de vibrações.É para compensar essas deficiências aerodinâmicas que os engenheiros estão trabalhando na construção de um helicóptero-avião.
Engenheiros da agência espacial alemã, a DLR, parecem ter finalmente encontrado uma solução para minimizar, ou mesmo eliminar, todos esses problemas. A inspiração veio de saliências encontradas nas barbatanas das baleias-corcunda, conhecidas por suas capacidades acrobáticas.
"As pesquisas mostraram que essas saliências retardam significativamente a ocorrência da perda de velocidade (stalling) e aumenta a flutuabilidade," disse Holgei Mai, que está testando esse conceito nos helicópteros juntamente com seu colega Kai Richter.
Os fluxos na água são fenômenos similares aos fluxos no ar - os cientistas só tiveram que adaptar as dimensões das saliências. As saliências artificiais - por enquanto construídas em borracha - são menores do que as das baleias, com um diâmetro de 6 milímetros e pesando apenas 0,04 grama cada uma.
Para helicópteros novos e usados
Depois de testar o conceito no túnel de vento, com excelentes resultados, os dois engenheiros tiveram autorização para instalar as "lâminas-barbatana" em um helicóptero Bo-105. As quatro lâminas do rotor receberam um total de 186 saliências (foto), agora já batizadas tecnicamente de LEVoGs (Leading-Edge Vortex Generators - geradores de vórtices na borda frontal, em tradução livre). "Os pilotos perceberam imediatamente uma diferença no comportamento das lâminas do rotor," conta Richter.
Depois de testar o conceito no túnel de vento, com excelentes resultados, os dois engenheiros tiveram autorização para instalar as "lâminas-barbatana" em um helicóptero Bo-105. As quatro lâminas do rotor receberam um total de 186 saliências (foto), agora já batizadas tecnicamente de LEVoGs (Leading-Edge Vortex Generators - geradores de vórtices na borda frontal, em tradução livre). "Os pilotos perceberam imediatamente uma diferença no comportamento das lâminas do rotor," conta Richter.
Com um resultado tão promissor, sensível pelo piloto, a dupla agora está trabalhando na montagem de equipamentos especiais de medição para mensurar os efeitos obtidos com precisão. Segundo eles, a grande vantagem da nova tecnologia é que ela poderá ser aplicada aos helicópteros já fabricados, mediante a instalação de saliências na forma de um revestimento. Para os helicópteros novos, as bordas das lâminas de titânio poderão ser fresadas durante o processo de fabricação. Fonte: Inovação Tecnológica.
26/01/2012
Imagem da Terra em Alta Definição
A Nasa (Agência Espacial Americana) divulgou nesta quarta-feira (25) uma imagem da Terra com a mais alta resolução já feita: 8000 por 8000 pixels. A foto, uma nova edição da famosa “Blue Marble” (“Bola de Gude Azul" ou "Mármore Azul", em inglês), foi captada no dia 4 de janeiro pelo satélite de observação Suomi NPP e retrata a América do Norte e América Central. Segundo a Nasa, a “Blue Marble 2012” é a “mais incrível imagem em alta definição da Terra”.
A primeira imagem do tipo foi tirada em 1972 pela Apollo 17 e destaca o continente africano e a Península Arábica. Famosa até hoje, a foto é usada como plano de fundo de produtos da Apple, como iPhones e iPads. Fonte: Redação Yahoo!
18/12/2011
Bridgestone anuncia pneu ecológico
Se o pneu que a Bridgestone anunciou - ainda como conceito - fizer sucesso, a profissão de borracheiro pode estar em via de extinção.
Ninguém mais vai precisar encher ou calibrar o pneu, nem consertar se o motorista passar em cima de um prego.
Além de ser um pneu que elimina vários problemas, como calibragem, conserto e ter um local no carro para guardar o estepe, este pneu da Bridgestone é ecologicamente correto, pois é totalmente reciclável. Elimina também o problema deste tipo de lixo, que vem causando dores de cabeça para ecologistas, governos e fábricas de pneus.
A apresentação do pneu foi feita no Salão do Automóvel de Tóquio e na ocasião foi lembrado que protótipos deste tipo já foram desenvolvidos, mas que eram inviáveis para a produção em larga escala. Este não. Segundo a Bridgestone, ele pode ser fabricado e colocado em prática.
O pneu tem uma estrutura flexível, que se estende ao longo do interior dos pneus e que suporta todo o peso do veículo, não havendo necessidade de calibrá-los periodicamente, exigindo menos manutenção. Ao mesmo tempo, a preocupação com perfurações é eliminada.
Além disso, a estrutura interna é produzida a partir de resinas termoplásticas reutilizáveis, e assim como a borracha da banda de rodagem, estes são materiais 100% recicláveis. Fonte: AutoInforme.
Ninguém mais vai precisar encher ou calibrar o pneu, nem consertar se o motorista passar em cima de um prego.
Além de ser um pneu que elimina vários problemas, como calibragem, conserto e ter um local no carro para guardar o estepe, este pneu da Bridgestone é ecologicamente correto, pois é totalmente reciclável. Elimina também o problema deste tipo de lixo, que vem causando dores de cabeça para ecologistas, governos e fábricas de pneus.
A apresentação do pneu foi feita no Salão do Automóvel de Tóquio e na ocasião foi lembrado que protótipos deste tipo já foram desenvolvidos, mas que eram inviáveis para a produção em larga escala. Este não. Segundo a Bridgestone, ele pode ser fabricado e colocado em prática.
O pneu tem uma estrutura flexível, que se estende ao longo do interior dos pneus e que suporta todo o peso do veículo, não havendo necessidade de calibrá-los periodicamente, exigindo menos manutenção. Ao mesmo tempo, a preocupação com perfurações é eliminada.
Além disso, a estrutura interna é produzida a partir de resinas termoplásticas reutilizáveis, e assim como a borracha da banda de rodagem, estes são materiais 100% recicláveis. Fonte: AutoInforme.
02/12/2011
Otimizadores de Combustíveis
Desde o momento em que os motores saem das fábricas, sejam eles movidos à gasolina, diesel ou óleos marítimos, depósitos de resíduos da combustão começam a se formar em diversas partes dos mesmos. Esses resíduos são inerentes ao processo de combustão, pois são misturas de diversos hidrocarbonetos, alguns deles mais pesados e, portanto, de queima mais difícil.
Além disso, a própria geometria construtiva dos motores pode apresentar pontos em que a velocidade da mistura ar-combustível é mais baixa, proporcionando superfícies quentes nas quais os combustíveis líquidos tendem a se depositar, ocasionando a "carbonização". Assim, os motores vão aos poucos apresentando depósitos mais ou menos acentuados, de acordo com o ciclo de utilização.
Os motores são compostos por peças que possuem folgas médias de aproximadamente 5 microns, e a maioria das partículas presentes na atmosfera ou oriundos de desgastes são maiores do que este valor e se estas não forem removidas adequadamente vão provocar desgastes por abrasão, que por sua vez vão gerar mais partículas. As partículas, principalmente as metálicas, catalisam o processo de oxidação do lubrificante, acelerando sua degradação, e lubrificante degradado provoca desgaste nas peças do motor.
A água ou mesmo a umidade, mesmo em volumes muito pequenos como 500 PPM, ou 0,05%, já são suficientes para afetar sensivelmente a vida útil do motor, por exemplo esta quantidade de água diminui em 70% a vida de um rolamento. O lubrificante oxidado em presença de água forma ácido potencialmente corrosivo. Além disso a água aumenta a viscosidade do lubrificante, provoca ferrugem, desgaste por cavitação, acelerando ainda mais a redução da vida do motor.
O enxofre em conjunto com a água forma ácidos fortes que corroem o motor, criam bactérias e fungos, mais ácidos, tiram o poder lubrificante e destroem o motor. Além da necessidade de se utilizar lubrificantes que já vêm formulados com "anticorrosivos", ou um condicionador de metais que potencializa a capacidade de carga de um lubrificante, é necessário a adição de "Otimizadores de Combustíveis" que adequam as principais propriedade do Diesel ao consumo.
A composição desse produto multifuncional, com solventes, detergentes, solubilizadores e catalisador de combustão, permitem a dissolução de borras e confere a homogeneização das cadeias de hidrocarbonetos, e por ser também um tenso ativo poderoso melhora a atomização. Por se tratar de um produto bipolar reage com componentes polar e apolar permitindo a realização de pontes de hidrogênio (dispersante de água em hidrocarbonetos), encapsulando a água contida (até 0,1%). Seus componentes auxiliares adicionam lubricidade aos combustíveis e elevam o índice de cetano. O componente "diluente", além de facilitar a solubilidade dos contidos do aditivo aos combustíveis, funciona também como emulgador de cadeias complexas de hidrocarbonetos leves e saturados, de origem fóssil, animal ou vegetal.
Fonte: Teccom (Com Adaptações).
Além disso, a própria geometria construtiva dos motores pode apresentar pontos em que a velocidade da mistura ar-combustível é mais baixa, proporcionando superfícies quentes nas quais os combustíveis líquidos tendem a se depositar, ocasionando a "carbonização". Assim, os motores vão aos poucos apresentando depósitos mais ou menos acentuados, de acordo com o ciclo de utilização.
Os motores são compostos por peças que possuem folgas médias de aproximadamente 5 microns, e a maioria das partículas presentes na atmosfera ou oriundos de desgastes são maiores do que este valor e se estas não forem removidas adequadamente vão provocar desgastes por abrasão, que por sua vez vão gerar mais partículas. As partículas, principalmente as metálicas, catalisam o processo de oxidação do lubrificante, acelerando sua degradação, e lubrificante degradado provoca desgaste nas peças do motor.
A água ou mesmo a umidade, mesmo em volumes muito pequenos como 500 PPM, ou 0,05%, já são suficientes para afetar sensivelmente a vida útil do motor, por exemplo esta quantidade de água diminui em 70% a vida de um rolamento. O lubrificante oxidado em presença de água forma ácido potencialmente corrosivo. Além disso a água aumenta a viscosidade do lubrificante, provoca ferrugem, desgaste por cavitação, acelerando ainda mais a redução da vida do motor.
O enxofre em conjunto com a água forma ácidos fortes que corroem o motor, criam bactérias e fungos, mais ácidos, tiram o poder lubrificante e destroem o motor. Além da necessidade de se utilizar lubrificantes que já vêm formulados com "anticorrosivos", ou um condicionador de metais que potencializa a capacidade de carga de um lubrificante, é necessário a adição de "Otimizadores de Combustíveis" que adequam as principais propriedade do Diesel ao consumo.
A composição desse produto multifuncional, com solventes, detergentes, solubilizadores e catalisador de combustão, permitem a dissolução de borras e confere a homogeneização das cadeias de hidrocarbonetos, e por ser também um tenso ativo poderoso melhora a atomização. Por se tratar de um produto bipolar reage com componentes polar e apolar permitindo a realização de pontes de hidrogênio (dispersante de água em hidrocarbonetos), encapsulando a água contida (até 0,1%). Seus componentes auxiliares adicionam lubricidade aos combustíveis e elevam o índice de cetano. O componente "diluente", além de facilitar a solubilidade dos contidos do aditivo aos combustíveis, funciona também como emulgador de cadeias complexas de hidrocarbonetos leves e saturados, de origem fóssil, animal ou vegetal.
Fonte: Teccom (Com Adaptações).
23/11/2011
Impacto do Etanol em Motores de Combustão
Um consórcio entre empresas e universidades está estudando maneiras de aperfeiçoar motores bicombustível em uma pesquisa pré-competitiva que acaba de receber apoio da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp). Conduzido por cinco montadoras de veículos – Volkswagen, Fiat, Renault, General Motors e PSA Peugeot Citroën –, uma fabricante de peças de motores – Mahle Metal Leve –, a Petrobras e três instituições de ensino superior sediadas no Estado – Universidade de São Paulo (USP), Universidade Estadual de Campinas (Unicamp) e Universidade Federal do ABC (UFABC) –, o projeto "Desafios Tribológicos em Motores Flex-Fuel" tem como foco a área de tribologia. (clique no link para saber mais sobre tribologia)
De acordo com o projeto, o uso de etanol em motores, além do aumento de solicitação decorrente da maior pressão de combustão, incorpora condicionantes ainda mal entendidas como possível lavagem e diluição do lubrificante durante a partida a frio, ambiente mais corrosivo, ou, de modo geral, alteração no meio ambiente do sistema tribológico, o que já têm resultado em falhas nos componentes de motores.
Eduardo Tomanik, gestor de inovação da Mahle Metal Leve, foi um dos idealizadores da iniciativa em 2009, juntamente com o professor Amilton Sinatora, da Escola Politécnica da USP, que coordena o projeto. "Problemas e oportunidades de motores flex-fuel são uma peculiaridade do Brasil. As montadoras estão começando a fazer pesquisa sobre isso no exterior, em consórcios, de maneira semelhante ao nosso, como na Inglaterra, por exemplo", explica Tomanik em entrevista a Inovação Unicamp. Segundo ele, a indústria brasileira apenas adaptou o motor movido a gasolina para uso com etanol, sem um esforço de pesquisa e desenvolvimento mais aprofundado. Fonte: CIMM (Com Adaptações).
Assinar:
Postagens (Atom)
Leia também...
COMO FAZER REFERÊNCIAS DE SITES NAS NORMAS ABNT
A elaboração de referências bibliográficas é uma etapa essencial na construção de qualquer trabalho acadêmico. A padronização dessas referên...