08/08/2025

AV2 - Termodinâmica [RESOLVIDA COM NOTA MÁXIMA]


1)

A evaporação é uma operação frequentemente usada na indústria de alimentos para a concentração de suco de frutas. Um evaporador de simples efeito é composto por um trocador de calor e um dispositivo para separar a fase vapor do líquido em ebulição (Figura), sendo este um processo de caraterizado pelo alto consumo de energia. Se uma pequena indústria requer concentrar 5000 kg/h de suco de laranja com uma concentração inicial de sólidos dissolvidos de 5% para 25 % utilizando vapor saturado a 150 KPa no interior do trocador de calor. A entalpia da água como vapor saturado e liquido saturado a 150 kPa são, respectivamente, 2693 kJ/kg e 467 kJ/kg.

 

Figura

Evaporador simples efeito

Desprezando as perdas por transferência de calor entre o evaporador com o ambiente, as variações de energia cinética e potencial gravitacional. Qual é o calor requerido pelo evaporador e a vazão mássica do vapor de aquecimento?


Alternativas:

  • a)

    3150,3 kJ/s / 0,22 kg/s.

  • b)

    2402,3 kJ/s / 1,84 kg/s.

  • c)

    2819,7 kJ/s / 1,26 kg/s.


  • d)

    2519,7 kJ/s / 0,86 kg/s.

  • e)

    3512,7 kJ/s / 0,99 kg/s.

2)

O efeito frigorífico em um sistema de refrigeração é gerado no conjunto válvula de expansão e evaporador, como é apresentado na Figura.

Figura

Valvula-Evaporador 

 

 

Considere que o sistema apresentado na Figura anterior é uma parte de um Chiller de absorção, no qual 0,5 kg/s de amônia com uma pressão de 1400 kPa e uma temperatura de 295 K é expandido até 280 kPa para posteriormente, num evaporador adiabático, esfriar ar com uma pressão de 100 kPa de 30°C para 25°C.

Se o dispositivo opera em regime permanente e os efeitos da energia cinética e potencial podem ser desconsiderados, assinale a alternativa correta que representa a temperatura da amônia na saída da válvula de expansão e vazão mássica do ar no evaporado (ARs). Assuma que a amônia na saída do evaporador possui uma temperatura de 273,15 K.


Alternativas:

  • a)

    273 K / 44,6 kg/s.

  • b)

    273 K / 38,5 kg/s.

  • c)

    262 K / 58,3 kg/s.


  • d)

    273 K / 28,3 kg/s.

  • e)

    262 K / 44,6 kg/s.

3)

A regeneração de calor é um método comumente utilizado para aumentar a eficiência térmica em instalações de potência. Este processo consiste no aproveitamento energético de uma fonte calor que normalmente é rejeitada ao meio ambiente sem nenhum aproveitamento utilizando um trocador de calor adicional (Regenerador). Na Figura 1B observa-se que um regenerador foi incorporado ao ciclo Brayton com o intuito de aproveitar os gases quentes que são descarregados pela turbina com o fim de reduzir o consumo de energia (Qe) e aumentar a eficiência no ciclo termodinâmico.

 

Figura 1

Turbina a GÁS

 

Considere o ciclo termodinâmico apresentado na Figura 1A que utiliza ar seco como fluido de trabalho, uma vazão mássica de 3,2 kg/s e seus parâmetros de operação estão resumidos na Tabela 1.

 

Tabela 1.

Fluxo

Pressão

(kPa)

Temperatura

(K)

1

101.325

298

2

800

535

3

800

1000

4

101.325

710

 

De acordo com os dados fornecidos na Tabela 1 e considerando que todos os equipamentos do ciclo são adiabáticos e que não há perda de carga nos trocadores de calor avalie as afirmações a seguir como (V) verdadeiras ou (F) falsas.

 

(   ) Sob as condições apresentadas na Tabela 1 o ciclo de Brayton sem regeneração (Figura 1A) possui uma geração de trabalho mecânico líquido inferior a 1200 kW.

(   ) O calor requerido (Qe) para elevar a temperatura do fluxo 2 no ciclo de Brayton sem regeneração é superior a 2000 kJ/s.

(   ) Considerando que a vazão mássica continua sendo 3,2 kg/s, que as condições de pressão e temperatura dos fluxos 1, 2, 3 e 4 do ciclo Brayton com regeneração (Figura 1B) são equivalentes aos apresentados na Tabela 1 e que a temperatura do fluxo 5 é 646 K, o calor requerido (Qe) para elevar a temperatura do fluxo 5 no ciclo é inferior a 2000 kJ/s.

(   ) O uso do recuperador de calor no ciclo Brayton incrementou o trabalho gerado pela turbina em 60 kW.

É correto o que se afirma em:


Alternativas:

  • a)

    V – V – F - F.

  • b)

    F – F – V - V.

  • c)

    V – V – V - F.


  • d)

    F – F – F - V.

  • e)

    F – V – F - V.

4)

A Figura 1 apresenta um sistema que opera como um ciclo entre quatro reservatórios térmicos. O sistema A representa um ciclo de potência operando entre os reservatórios T1=900 K e T2=360 K, sendo utilizado para acionar o sistema B que representa um ciclo de refrigeração que opera entre os reservatórios T3=263 K e T4=315,6 K.

 

Figura 1.

ciclo composto.

Considerando que o trabalho desenvolvido pelo sistema A é de 300 kJ, assinale a alternativa correta que representa, respectivamente: o calor fornecido pelo reservatório T1 (Q1), o calor rejeitado ao reservatório T2 (Q2), o calor retirado do reservatório T3 (Q3) e o calor rejeitado ao reservatório T4 (Q4) para que a geração de entropia do sistema térmico (Figura 1) seja nula.   


Alternativas:

  • a)

    800 kJ / 500 kJ / 1200 kJ / 1500 kJ.

  • b)

    400 kJ / 100 kJ / 800 kJ / 1100 kJ.

  • c)

    700 kJ / 400 kJ / 900 kJ / 1200 kJ.

  • d)

    500 kJ / 200 kJ / 1500 kJ / 1800 kJ.


  • e)

    900 kJ / 600 kJ / 1800 kJ / 2100 kJ.

5)

Um ciclo de potência que utiliza 4 kg/s de água como fluido de trabalho está composto por 4 processos desenvolvidos em série. O ciclo opera em estado permanente e fornece os seguintes dados termodinâmicos (Tabela 1), onde (S) representa a entropia, (T) a temperatura e (x) o título da mistura líquido-vapor.

 

Ciclo Termodinâmico

Baseado nas informações fornecidas na Tabela 1 os valores  do calor fornecido ao evaporador (Processo 4-1), o calor retirado no condensador (Processo 2-3) e a potência do ciclo termodinâmico são de


Alternativas:

  • a)

    Q4-1 = 4033,2 kJ/s / Q2-3 = 2833,2 kJ/s / W = 1200,0 kW.

  • b)

    Q4-1 = 5000,1 kJ/s / Q2-3 = 3500,1 kJ/s / W = 1500,1 kW.

  • c)

    Q4-1 = 6059,1 kJ/s / Q2-3 = 4311,2 kJ/s / W = 1747,9 kW.

  • d)

    Q4-1 = 7179,3 kJ/s / Q2-3 = 5278,4 kJ/s / W = 1900,8 kW.


  • e)

    Q4-1 = 8005,2 kJ/s / Q2-3 = 5354,4 kJ/s / W = 2650,8 kW.

ATIVIDADE RESOLVIDA
 
     
    R$15,00 NO PIX

    professorcarlao.23@gmail.com 
    [EMAIL]


    APÓS FAZER O PAGAMENTO ACESSE O LINK ABAIXO 

05/08/2025

AV1 - Termodinâmica [RESOLVIDA COM NOTA MÁXIMA]

1) Sabemos que a massa específica é mais usual na engenharia e tem como símbolo a letra grega ¿ (rô), o volume específico (v) é a mais usual na termodinâmica e a pressão é utilizada para o calculo do trabalho. Relacione as propriedade relacionadas na coluna A com informações apresentadas na coluna B.

 

 

Coluna A Coluna B
I -Massa específicaA -É dado pela razão entre volume e massa.
II - Volume específicoB - É dado pela razão entre a força e área.
III - Pressão

C - É dado pela razão entre a massa e o volume.

Assinale a alternativa correta.


Alternativas:

  • a)

    I-A / II-B / III-C.

  • b)

    I - B / II-A / III-C.

  • c)

    I-C / II-A / III-B.

  • d)

    I-C / II-B / III-A.

  • e)

    I-A / I-C / III-B.

2)

Ao iniciar um experimento, em um recipiente de vidro temperado e graduado, utilizando termômetro e manômetro, colocamos 5 kg de água liquida a uma temperatura de 20ºC e pressão atmosférica a nível do mar de 101 KPa. Esse recipiente será fechado e um bico de Bunsen fornece calor a esse sistema. Após algum tempo de experimento, o manômetro está exibindo uma pressão de 190 KPa, a temperatura indicado no termômetro é de 120 ºC. Através da graduação do recipiente, notamos que a massa de água liquida é de 2,8 Kg.

Para que o experimento seja valido, necessitamos que o titulo seja de no máximo 35% de massa de água na fase de vapor. Assinale a alternativa correta.


Alternativas:

  • a)

    O experimento é válido pois o titulo da mistura é 33% de massa de água na fase de vapor.

  • b)

    O experimento não é válido pois o titulo da mistura é 67% de massa de água na fase de vapor.

  • c)

    O experimento é válido pois o titulo da mistura é 28% de massa de água na fase de vapor.

  • d)

    O experimento não é válido pois o titulo da mistura é 44% de massa de água na fase de vapor.

  • e)

    O experimento não é válido pois o titulo da mistura é 56% de massa de água na fase de vapor.

3)

Um recipiente contém uma mistura saturada de fluido refrigerante R–134a a 30°C. Sabe-se que o volume ocupado pela fase líquida é 0,1 m3 e que o volume ocupado pela fase vapor é 0,9 m3. A tabela abaixo apresenta os valores da propriedades termodinâmicas, para líquido e vapor, da substância pura em questão.

 

Tabela 1. Propriedades termodinâmicas do Gás refrigerante R-134a.

 

q2pos

 

Fonte da imagem: VAN WYLEN, G.; SONNTAG, R.; BORGNAKKE, C. Fundamentos da Termodinâmica Clássica. Ed. Edgard Blucher Ltda., São Paulo, 1997.

Com base nessas informações, o título da mistura contida no recipiente é de:


Alternativas:

  • a)

    10,2 %.

  • b)

    11,8 %.

  • c)

    14,7 %.

  • d)

    18,7 %.

  • e)

    22,1%.

4)

Segundo Moran & Shapiro (2002, p 46), quando um sistema em um dado estado inicial percorre uma sequência de processos (mudança de estado) e finalmente retorna àquele estado, o sistema executou um ciclo termodinâmico, como o apresentado na Figura.

 

Ciclo TermodinâmicoW subscript c i c l o end subscript equals W subscript t minus W subscript b Q subscript c i c l o end subscript equals Q subscript e v p end subscript minus W subscript c o n end subscript

MORAN, Michael J.; SHAPIRO, Howard N. Princípios de Termodinâmica para Engenharia. 4A. ed. Rio de Janeiro: LTC, 2002.

 

Com base nesta definição, avalie as asserções a seguir e a relação proposta entre elas.

 

I. O balanço de energia de um sistema termodinâmico que percorre um ciclo pode ser definido matematicamente como (increment E equals Q subscript c i c l o end subscript space minus space W subscript c i c l o end subscript), onde Qciclo e Wciclo representam respectivamente a energia líquida transferida na forma de calor e trabalho e ¿E representa a variação de energia líquida no sistema, que é nula (¿E = 0), uma vez que o sistema sempre retorna ao seu estado inicial após completar o ciclo.

PORQUE

 

II. Segundo a primeira lei da termodinâmica, toda a energia que é fornecida ao ciclo termodinâmico na forma de calor é convertida em energia na forma de trabalho sem importar a natureza das substâncias ou o número de processos que compõem o ciclo termodinâmico.

A respeito dessas asserções, assinale a alternativa correta.


Alternativas:

  • a)

    As asserções I e II são proposições verdadeiras, e a II é uma justificativa da I.

  • b)

    As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa da I.

  • c)

    A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.

  • d)

    A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.

  • e)

    As asserções I e II são proposições falsas.

5)

Um sistema termodinâmico que pode ser considerado um sistema fechado experimenta um processo de interações energéticas na forma de calor e trabalho de eixo de acordo com os dados apresentados na Tabela 1.

Tabela 1

t (min)

Q (kJ/s)

Wn (kJ/s)

0

9632

0,0

10

9632

777,5

20

9632

1353,6

30

9632

1780,3

40

9632

2096,4

50

9632

2330,6

60

9632

2504,1

65

9632

2504,1

80

9632

2504,1

200

9632

2504,1

 

De acordo com os dados fornecidos na Tabela 1 avalie as afirmações a seguir como (V) verdadeiras ou (F) falsas.

(   ) O sistema termodinâmico apresentado mostra um processo em operação transiente, o qual recebe energia a uma taxa constante na forma calor desde suas vizinhanças e transfere ao seu entorno energia na forma de trabalho a uma taxa (dW/dt), atingindo o estado de operação estável após uma hora de operação.

(   ) Após 75 min de operação a taxa de variação de energia no sistema (dE/dt) é equivalente a 2504,1 kJ/s.

(   ) Após 40 min de operação a variação de energia do sistema (¿E) é equivalente a 335150,3 kJ/s.

(   ) Após 200 min de operação a variação de energia do sistema (¿E) é equivalente a 1479297,6 kJ/s.

É correto o que se afirma em:


Alternativas:

  • a)

    V – V – F - F.

  • b)

    F – F – V - V.

  • c)

    F – V – F - V.

  • d)

    V – F – F - V.

  • e)

    V – F – V - V.

ATIVIDADE RESOLVIDA
 
     
    R$15,00 NO PIX

    professorcarlao.23@gmail.com 
    [EMAIL]


    APÓS FAZER O PAGAMENTO ACESSE O LINK ABAIXO 

LEIA TAMBÉM...

[RESPOSTA DE PROVA][REALIZE UM AJUSTE LINEAR...]

O ajuste de curvas é uma técnica fundamental em diversas áreas da engenharia e ciência, utilizado para modelar fenômenos a partir de dados e...