Pesquisar este blog

08/12/2009

Iniciação à Robótica Aula 4

CONFIGURAÇÃO DOS ROBÔS

Robô Cartesiano:

  • O robô de coordenadas cartesianas, utiliza três juntas lineares. É o robô de configuração mais simples, desloca as três juntas uma em relação à outra. Este robô opera dentro de um envoltório de trabalho cúbico.

Robô cilíndrico

  • Este braço possui na base uma junta prismática, sobre a qual apóia-se uma junta rotativa (torcional). Uma terceira junta do tipo prismática é conectada na junta rotativa. Este braço apresenta um volume de trabalho cilíndrico.

Robô esférico ou polar

  • Este tipo de braço robótico foi projetado para suportar grandes cargas e ter grande alcance. É bastante utilizado para carga e descarga de máquinas, embora o braço revoluto seja mais comum nestas aplicações. Ele conta com duas juntas rotativas seguida de uma junta prismática. A primeira junta move o braço ao redor de um eixo vertical, enquanto que a segunda junta gira o conjunto ao redor de um eixo horizontal. O volume de trabalho é um setor esférico, de onde este manipulador obteve seu nome. A denominação “polar” deve-se as coordenadas polares de sistemas de eixos cartesianos, caracterizadas por duas coordenadas angulares (juntas rotativas) e uma coordenada radial (junta prismática).

Robô SCARA

  • Este é também um braço bastante utilizado, pois é compacto, tem grande precisão e repetibilidade, embora com um alcance limitado. Estas características o tornam próprios para trabalhos em montagem mecânica ou eletrônica que exigem alta precisão. Possui duas juntas rotativas e uma junta linear, que atua sempre na vertical. O volume de trabalho deste braço é cilíndrico, porém, como utiliza juntas rotativas, é também considerado articulado. O nome e um acrônimo de Selective Compliance Assembly Robot Arm, ou Braço Robótico de Montagem com Complacência Seletiva.

Robô articulado ou revoluto

  • Estes tipos de robôs possuem 3 juntas rotativas. Eles são os mais utilizados nas indústrias, por terem uma configuração semelhante ao do braço humano, (braço, antebraço e pulso). O pulso é unido a extremidade do antebraço, o que propícia juntas adicionais para orientação do órgão terminal. Este modelo de configuração é o mais versátil dos manipuladores, pois assegura maiores movimentos dentro de um espaço compacto. Os braços revolutos podem ser de dois tipos: cadeia aberta ou cadeia parcialmente fechada. Nos primeiros pode-se distinguir facilmente a sequência natural formada por elo-junta, da base até o punho. Nos braços de cadeia parcialmente fechada o atuador da terceira junta efetua o movimento desta por meio de elos e articulações não motorizadas adicionais.

Robô paralelo

  • Estes tipos de manipuladores possuem juntas que transformam movimentos de rotação em translação, ou usam diretamente juntas prismáticas. Sua principal característica é um volume de trabalho reduzido, porém uma alta velocidade, o que o torna propício para certas atividades de montagem. Outra característica destes braços é que eles não possuem cinemática com cadeia aberta, como a maioria dos robôs industriais. Os quatro ou seis atuadores destes braços unem a base diretamente ao punho.

05/12/2009

Refrigeração Aula 4 - 2009


  • O sistema de refrigeração pelo método de compressão baseia-se na utilização do calor absorvido por um corpo, durante sua mudança de estado físico. Queremos deixar claro que não falamos do calor que absorve um corpo sólido quando ele se transforma em líquido e sim, no calor que retira um líquido quando vira vapor.
  • Estes sistemas de refrigeração usam produtos químicos chamados “fluidos refrigerantes” e a sua condição fundamental é que seu ponto de ebulição é muito inferior à temperatura ambiente, cerca de 30º C negativos.
  • O sistema de compressão é o mais utilizado nos dias de hoje e sua vantagem principal é que o líquido, depois da sua vaporização, é recuperado, pois a circulação é feita no interior de um circuito fechado.
  • O fluido refrigerante encontra-se no interior do evaporador e retira o calor do local onde ele se encontra e muda seu estado de líquido para vapor. Esses vapores são aspirados pelo compressor e fornecidos, sob pressão, para o condensador.
  • Neste componente, ele vira líquido novamente e perde o calor que absorveu. Desta forma, o calor que os alimentos ou objetos tinham e que estavam localizados perto do evaporador, e o calor gerado pela compressão, são descarregados ao meio ambiente.
  • O fluido refrigerante necessário no interior do evaporador é fornecido pelo ingresso de mais fluido que vem do condensador, mantendo, dessa maneira, fluido refrigerante no evaporador.
  • Na sua trajetória desde o condensador até o evaporador, o refrigerante passa através de um dispositivo de expansão, onde ele perde a sua pressão e volta a ter a sua temperatura de vaporização.
  • É assim que o circuito se completa e o fluido refrigerante volta a ter condições de absorver calor.
  • O sistema de refrigeração por compressão está dividido em dois circuitos: de alta pressão e de baixa pressão. Os elementos que formam o circuito de alta pressão são aqueles que ficam entre a saída do compressor e o dispositivo de expansão. O circuito de baixa pressão fica entre a saída do dispositivo de expansão até a entrada do compressor.

30/11/2009

Refrigeração Aula 3 - 2009

  • Os sistemas físicos que encontramos na Natureza consistem em um agregado de um número muito grande de átomos. A matéria está em um dos três estados: sólido, líquido ou gasoso: Nos sólidos, as posições relativas (distância e orientação) dos átomos ou moléculas são fixas. Nos líquidos as distâncias entre as moléculas são fixas, porém sua orientação relativa varia continuamente.
  • Nos gases, as distâncias entre moléculas, são em geral, muito maiores que as dimensões das mesmas. As forças entre as moléculas são muito fracas e se manifestam principalmente no momento no qual chocam. Por esta razão, os gases são mais fáceis de descrever que os sólidos e que os líquidos. O gás contido em um recipiente, é formado por um número muito grande de moléculas, 6.02·10²³ moléculas em um mol de substância.
  • Quando se tenta descrever um sistema com um número muito grande de partículas resulta difícil (é impossível) descrever o movimento individual de cada componente. Por isto mediremos grandezas que se referem ao conjunto: volume ocupado por uma massa de gás, pressão que exerce o gás sobre as paredes do recipiente e sua temperatura. Estas quantidades físicas são denominadas macroscópicas, no sentido de que não se referem ao movimento individual de cada partícula, e sim do sistema em seu conjunto.
  • Denominamos estado de equilíbrio de um sistema quando as variáveis macroscópicas pressão p, volume V, e temperatura T, não variam. O estado de equilíbrio é dinâmico no sentido de que os constituintes do sistema se movem continuamente. O estado do sistema é representado por um ponto em um diagrama p-V. Podemos levar o sistema desde um estado inicial a outro final através de uma sucessão de estados de equilíbrio.
  • Se denomina equação de estado, a relação que existe entre as variáveis p, V, e T. A equação de estado mais simples é a de um gás ideal pV=nRT, denominada Equação de Clapeyron(foto), onde n representa o número de mols, e R a constante dos gases R=0.082 atm·l/(K mol). Geralmente para fins de cálculos, igualamos n=1 assim teremos uma nova composição da equação de Clapeyron, onde n será desprezível e R=0,082(constante dos Gases). Desta forma(p.V=R.T), podemos calcular as variações da pressão, do volume ou da temperatura do fluido refrigerante.
  • Denominamos energia interna do sistema a soma das energias de todas as suas partículas. Em um gás ideal as moléculas somente tem energia cinética, os choques entre as moléculas são supostos perfeitamente elásticos, a energia interna somente depende da temperatura. Na máquina frigorífica(processo de refrigeração), o sistema recebe trabalho, através de uma energia eletromecânica que comprime o fluido refrigerante e fornece calor em forma de energia.
  • A reação sofrida pelo próprio fluido(endotérmica), absorve toda energia do meio, pois o corpo de maior temperatura cede calor para o corpo de menor temperatura. Desta forma temos um processo cíclico fechado e reversível que acontece pelas variações que o fluido sofre na sua composição molecular, onde levamos em conta a relação variação de temperatura e estado que traduzimos como sendo calor sensível e calor latente.

28/11/2009

Iniciação à Robótica Aula 3

Os graus de liberdade (GL) determinam os movimentos do braço robótico no espaço bidimensional ou tridimensional. Cada junta define um ou dois graus de liberdade, e, assim, o numero de graus de liberdade do robô é igual a somatória dos graus de liberdade de suas juntas. Por exemplo, quando o movimento relativo ocorre em um único eixo, a junta tem um grau de liberdade; caso o movimento se dê em mais de um eixo, a junta tem dois graus de liberdade. Observa-se que quanto maior a quantidade de graus de liberdade, mais complicadas são a cinemática, a dinâmica e o controle do manipulador. O número de graus de liberdade de um manipulador esta associado ao numero de variáveis posicionais independentes que permitem definir a posição de todas as partes do robô.
Os movimentos robóticos podem ser separados em movimentos do braço e do punho. Em geral os braços são dotados de 3 acionadores e uma configuração 3GL, numa configuração que permita que o orgão terminal alcance um ponto qualquer dentro de um espaço limitado ao redor do braço. Pode-se identificar 3 movimentos independentes num braço qualquer:
  • Vertical transversal – movimento vertical do punho para cima ou para baixo
  • Rotacional transversal – movimento do punho horizontalmente para a esquerda ou para a direita.
  • Radial transversal – movimento de aproximação ou afastamento do punho
Os punhos são compostos de 2 ou 3 graus de liberdade. As juntas dos punhos são agrupadas num pequeno volume de forma a não movimentar o orgão terminal em demasia ao serem acionadas. Em particular, o movimento do punho possui nomenclaturas especificas, conforme descritas a seguir:
  • Roll ou rolamento - rotação do punho em torno do braço
  • Pitch ou arfagem - rotação do punho para cima ou para baixo
  • Yaw ou guinada - rotação do punho para a esquerda e para a direita.
  • Braços de robôs são frequentemente descritos como tendo um certo número de graus de liberdade ou um certo número de eixos de movimento. Em robótica , o número de graus de liberdade é o número de movimentos distintos que o braço pode realizar.
  • Normalmente o número de graus de liberdade iguala-se ao número de juntas, de forma que um robô de cinco graus de liberdade possui cinco juntas, e um robô com seis eixos tem seis juntas. A noção de graus de liberdade tem limites definidos.
  • Por exemplo, uma junta não possui apenas uma direção de movimento, mas também limites a este movimento. Essa faixa de movimento permitido, que não tem nada a ver diretamente com graus de liberdade, é muito importante. Por exemplo, quando seguramos uma bola de tênis na mão, a seguramos mantendo a palma da mão em contato com ela. Isto ocorre porque as juntas de nossos dedos só dobram na direção da palma da mão e não em direção às costas desta.
  • Caso nossas juntas tivessem uma faixa de movimento que lhes permitisse dobrar nas duas direções, seríamos capazes de pegar uma bola de tênis tanto com a palma como com as costas da mão. Assim, usamos os graus de liberdade adicionais das juntas de nossos punhos, cotovelo e ombro para mover nossa mão de tal forma que a palma fique de frente para a bola.
  • Portanto ter mais juntas (punho, cotovelo e ombro) e em consequência mais graus de liberdade, ajuda-nos a compensar o fato de ter uma faixa de movimentos um tanto limitada em nossos dedos.

27/11/2009

Refrigeração Aula 2 - 2009

Se a pressão exercida na superfície de um corpo líquido for reduzida, este passará ao estado gasoso mais facilmente, requerendo neste caso uma quantidade menor de calor para evaporar. Por isso uma das primeiras etapas cumpridas no desenvolvimento dos sistemas de refrigeração foi encontrar o fluido cujo ponto de evaporação fosse mais baixo do que o da água. Esta característica foi encontrada nos chamados "fluidos refrigerantes". O fluido CFC-12 (R12) era um dos mais usados até ser proibido pelo elevado poder destrutivo do ozônio atmosférico (encarregado de interceptar a maior parte das radiações ultravioletas). O fluido HCFC-22 (R22) consegue a combinação de ótimas características químicas e físicas a um elevado rendimento volumétrico, sendo usado nas instalações de climatização de baixa a médias potências. O fluido CFC 114, é usado nos compressores centrífugos nas instalações de climatização. Conhecidos na realidade doméstica como “gás de geladeira”, os agentes refrigerantes são substâncias que absorvem grande quantidade de calor ao passarem do estado líquido para o gasoso. A absorção depende de uma fonte extra para efetuar a troca de calor (água ou o ar) e ocorre justamente com a mudança de fase do fluido (calor latente). Inicialmente, os refrigerantes mais usados eram a amônia, o dióxido de carbono, dióxido de enxofre e cloreto de metila. Em 1931, o setor conheceu os refrigerantes de fluorcarbono, fabricados pela Dupont. No ano seguinte, o cientista Thomas Midgely Jr. inventou o refrigerante 12, mais conhecido como Freon 12, ou o famigerado clorofluorcarbono (CFC). Este tem a característica de apresentar reação endotérmica – capacidade de regular sua própria temperatura de acordo com a interação com o meio – quando expande ou quando vaporiza. Além disso, não é inflamável, não é explosivo, não é tóxico e não corrói metais. No final da década de 80, um golpe esfriou o entusiasmo dos adeptos do CFC e outros. Evidências científicas ligaram os produtos de fluorcarbonos a buracos na camada de ozônio, importante barreira ao excesso de radiação solar ultravioleta na superfície terrestre. Em pesquisa de refrigerantes substitutos, a categoria dos hidrocarbonetos (HC) resultam inócuos para o ambiente, mas são extremamente inflamáveis, portanto são pouco adaptados aos Sistemas civis; a categoria dos refrigerantes naturais (amônia) apresenta boas propriedades termodinâmicas, baixa inflamabilidade, mas elevada toxicidade, enfim à categoria dos hidro-fluorcaburetos (HFC) que não têm o impacto no ozônio estratosférico, mas aumenta a poluição do ar (quantidades de CO² no ar). O gás HFC 134a (R134a) substitui o CFC-12 na refrigeração civil, seu impacto é baixo no ozônio, mas não é adaptado para os sistemas de climatização. A substituição do R22 recorre-se ao fluido HFC 407C (R407c) ou ao HFC 410A (R410a), mas em ambos os casos são necessários uma conversão das instalações de refrigeração e de ar-condicionado. Além destes, pode ser usado também o fluido HFC 404A (R404A) que, porém, apresenta um potencial de superaquecimento global entre os mais elevados da categoria dos hidrofluorcarburetos. Portanto, os sistemas de climatização continuam utilizando o R 22, porém em processo extremamente controlado, ou seja, para ocorrer uma entropia (desordem no sistema), seria necessário uma ação voluntária no sentido de romper a tubulação, causando assim um vazamento.

23/11/2009

Refrigeração Aula 1 - 2009

  • Propriedades termodinâmicas são características macroscópicas de um sistema, como: volume, temperatura, pressão etc.
  • Estado termodinâmico pode ser entendido como sendo a condição em que se encontra a substância, sendo caracterizado pelas suas propriedades.
  • Processo é uma mudança de estado de um sistema. O processo representa qualquer mudança nas propriedades da substância. Uma descrição de um processo típico envolve a especificação dos estados de equilíbrio inicial e final.
  • Ciclo é um processo, ou mais especificamente uma série de processos, onde o estado inicial e o estado final do sistema coincidem.
  • Propriedade termodinâmica de uma substância é qualquer característica observável dessa substância. Um número suficiente de propriedades termodinâmicas independentes constitui uma definição completa do estado da substância.
  • As propriedades termodinâmicas mais comuns são: temperatura (T), pressão (P), volume (V). Além destas propriedades termodinâmicas mais familiares, e que são mensuráveis diretamente, existem outras propriedades termodinâmicas fundamentais para a análise de transferência de calor, trabalho e energia, não mensuráveis diretamente, que são: energia interna, entalpia e entropia.
  • Se um líquido for introduzido num vaso onde existe, inicialmente, um grau de vácuo e cujas paredes são mantidas a temperatura constante, ele se evaporará imediatamente. No processo, o calor latente de vaporização, ou seja, o calor necessário para a mudança do estado líquido para o estado vapor é fornecido pelas paredes do vaso. O efeito de resfriamento resultante é o ponto de partida do ciclo de refrigeração.
  • À medida que o líquido se evapora, a pressão dentro do vaso aumenta até atingir, eventualmente, a pressão de saturação para a temperatura considerada. Depois disto nenhuma quantidade de líquido evaporará e, naturalmente, o efeito de resfriamento cessará.

Leia também...

ATIVIDADES DE ESTUDO 1 – MECÂNICA E RESISTÊNCIA DOS MATERIAIS [RESOLVIDA]

QUESTÃO 1 Considere que você seja o responsável técnico em uma empresa que projeta estrutura metálicas, e precise avaliar um ponto específic...