Mostrando postagens com marcador ciências. Mostrar todas as postagens
Mostrando postagens com marcador ciências. Mostrar todas as postagens

26/12/2010

Vulcanização transforma elastômero em termofixo



  • Os polímeros lineares são aqueles em que as unidades (mero) estão unidas ponta a ponta em cadeias únicas. Essas longas cadeias são flexíveis (como se fossem um colar de pequenas esferas interligadas por um fio), onde cada esfera representa uma unidade de mero. Nos polímeros lineares, podem existir grandes quantidades de ligações de van der Waals entre as cadeias. (Callister, 2000). Alguns dos polímeros comuns que se formam como estruturas lineares são: o polietileno, o poliestireno, o náilon e os fluorocarbonos.
  • Os elastômeros são redes lineares de polímeros unidos através de ligações cruzadas e a força resistente às deformações é proporcional ao número de redes de polímeros por unidade de volume. Nos polímeros com ligações cruzadas, as cadeias lineares adjacentes estão unidas umas às outras em várias posições através de ligações covalentes.
  • O processo de formação de ligações cruzadas é atingido ou durante a síntese do polímero ou através de uma reação química não-reversível que é realizada geralmente a uma temperatura elevada. Com freqüência, essa formação é obtida através de átomos (ou moléculas) aditivos que estão ligados covalentemente às cadeias. Muitos materiais elásticos com características de borracha apresentam ligações cruzadas; nas borrachas, isso é conhecido como vulcanização. (Pinheiro, 2001)
  • A vulcanização é o processo químico capaz de produzir união entre as redes, inserindo ligações cruzadas na cadeia polimérica. Quando o enxofre é o agente vulcanizante, uma ligação cruzada consiste de um ou mais átomos de enxofre. Na vulcanização, a reação química transforma os materiais poliméricos em cadeia tridimensional através de cadeias independentes. Esse processo requer adição de calor e enxofre, com isso, a borracha adquire resistência mecânica através do aumento do seu módulo de elasticidade, de sua dureza, de sua resistência à fadiga e abrasão.
  • Em 1841, Charles Goodyear patenteou a vulcanização depois de descobrir que aquecendo um composto de borracha e enxofre, obtinham-se produtos com propriedades notavelmente superiores às da borracha original.
  • Conhecido como crosslinks (elos cruzados), esse processo forma um composto que converte o elastômero em termorrígido através de pontes de enxofre do tipo mono, di ou polissulfrídricas combinando o enxofre ao carbono presente na borracha.
  • O grande segredo do processo de produção de preservativos é a vulcanização, ou seja, uma reação química que aumenta a resistência da borracha sem fazê-la perder a elasticidade. Aliás, se a vulcanização não existisse, com certeza não existiriam camisinhas ultra-elásticas como as que conhecemos da mesma forma que não existiriam solas de sapato flexíveis, bolinhas de tênis e pneus. Com a borracha vulcanizada, o processo é simples: basta colocá-la em um molde de vidro e fazê-la secar. "Os grandes segredos da produção de preservativos são a formulação do composto de látex (matéria-prima da borracha) e a distribuição homogênea nos moldes", diz o engenheiro químico Walter Spinardi Junior, da Johnson & Johnson.
  • A maioria dos polímeros com ligações cruzadas e em rede, entre eles as borrachas vulcanizadas, os epóxis e as resinas fenolíticas são do tipo termofixo. (Callister, 2000)



Charles Goodyear - Inventor da Vulcanização


Referências Bibliográficas:
Callister, Willian – Ciência e Engenharia de Materiais, LTC – 5ª edição, 2000
Pinheiro, Eduardo – Modelos Numéricos Aplicados à Vulcanização de Pneus – Dissertação (Mestrado) – USP, 2001
Revista Mundo Estranho – Editora Abril.

06/12/2010

Características físico-químicas do Alumínio


Características físico-químicas

  • Propriedades Mecânicas
As propriedades mecânicas são determinadas por ensaios rotineiros de amostras selecionadas como sendo representativas do produto. Estes ensaios mecânicos são normalmente destrutivos de modo que não devem ser efetuados em produtos acabados, pois alteram suas condições de funcionalidade. Obtêm-se corpos de prova de amostras que tenham sido elaboradas do mesmo modo que o produto, exceto no caso de peças fundidas e forjadas. Os ensaios de peças fundidas são feitos em corpos-de-prova do mesmo vazamento do metal da peça fundida e elaborados ao mesmo tempo. Com as peças forjadas, os ensaios, geralmente, são feitos em pedaços cortados do mesmo metal da peça. Os valores das propriedades mecânicas podem dividir-se em dois grupos: 



  - Valores garantidos: Parâmetros mínimos estabelecidos pelas especificações;



  - Valores típicos:Obtidos por meio de dados estatísticos propiciados por ensaios rotineiros, que garantem que o material obedece às especificações. 
  • Limite de Resistência a Tração
É a máxima tensão que o material resiste antes de haver sua ruptura. Calcula-se dividindo a carga máxima (em quilogramas) aplicada durante o ensaio, pela seção transversal em milímetros quadrados do corpo-de-prova. Para o alumínio puro recozido, essa razão é de aproximadamente 48 MPa (4,9 kg/mm2). O valor aumenta em função da liga, do trabalho a frio e do tratamento térmico (quando possível).
  • Limite de Escoamento
Consiste na tensão em que o material começa a deformar-se plasticamente e que para o alumínio é de 0,2% do comprimento original medido em um corpo-de-prova normal. É importante definir este grau de deformação permanente porque as ligas de alumínio não possuem limite de escoamento tão pronunciado como a maioria dos aços. O limite do alumínio puro é de aproximadamente 12,7 Mpa (1,3 kg/mm2).
  • Alongamento
O alongamento é expresso em porcentagem relativamente ao comprimento original medido em um corpo de prova normal e é calculado pela diferença entre os pontos de referência, antes e depois do ensaio de tração. Esse alongamento indica a ductilidade do metal ou da liga. Quanto mais fino o corpo-de-prova, menor será o alongamento e vice-versa.
  • Dureza
Define-se como a medida da resistência de um metal à penetração. Existem várias maneiras de se determinar a dureza de um material. Para os metais, os mais comuns são os métodos de Brinell, Vickers e Rockwell. Não existe uma relação direta entre o valor da dureza e as propriedades mecânicas das várias ligas de alumínio. Os elementos de liga aumentam em muito sua resistência com o alumínio, assim como o tratamento térmico e o endurecimento pelo trabalho a frio. Entretanto a dureza é significativamente mais baixa do que a maioria dos aços.
  • Módulo de Elasticidade
O módulo de elasticidade do alumínio é de 7030 kg/mm2. A adição de outros materiais nas ligas não altera esse valor consideravelmente, que pode chegar a até 7500 kg/mm2. Portanto, o índice do alumínio representa um terço do módulo de elasticidade do aço. Essa propriedade dá ao alumínio a vantagem de dar às estruturas de alumínio uma elevada capacidade de amortecer golpes e reduzir as tensões produzidas pela variação da temperatura.
  • Tensão de Fadiga
Quando uma tensão oscilante é aplicada por certo número de vezes sobre um mesmo material, mesmo que os impactos tenham força inferior ao seu limite de resistência à tração, é previsível uma falha por fadiga. Em muitas ligas de alumínio não há um limite inferior de tensão abaixo do qual a fadiga nunca possa ocorrer, mas quanto menor a tensão, maior o número de ciclos necessários para produzir a falha. No alumínio, em testes normais, o limite de resistência chega a 50 milhões de inversão de tensão e pode variar de 25% a 50% da tensão de ruptura, conforme a liga.
  • Limites de Temperatura
O alumínio puro funde a 660ºC e várias ligas possuem um ponto de fusão inferior a esse. O metal puro e muitas ligas perdem um pouco a sua resistência, ficando sujeito a uma lenta deformação plástica, chamada de fluência, se permanecer sob tensão por longos períodos em temperaturas acima de 200ºC. Por outro lado, ligas feitas para serviços em altas temperaturas, como às usadas em pistões, retêm suas propriedades adequadamente, funcionando satisfatoriamente dentro da faixa de temperatura de trabalho requerida. Quando exposto a temperaturas abaixo de zero, o alumínio não se torna frágil. Sua resistência aumenta sem perder a ductilidade. Esta é a característica que leva uma liga de AlMg ser escolhida para a construção de tanques soldados para armazenamento de gás metano liquefeito, em temperaturas de –160ºC. Saiba mais sobre o Alumínio!

04/12/2010

Alumínio - Introdução



  • O alumínio, apesar de ser o terceiro elemento mais abundante na crosta terrestre, é o metal mais jovem usado em escala industrial. Mesmo utilizado milênios antes de Cristo, o alumínio começou a ser produzido comercialmente há cerca de 150 anos. Sua produção atual supera a soma de todos os outros metais não ferrosos. Esses dados já mostram a importância do alumínio para a nossa sociedade. Antes de ser descoberto como metal isolado, o alumínio acompanhou a evolução das civilizações. Sua cronologia mostra que, mesmo nas civilizações mais antigas, o metal dava um tom de modernidade e sofisticação aos mais diferentes artefatos.
  • O minério de alumínio predominante é a bauxita, a qual é constituída essencialmente de um óxido hidratado – Al2 O3 H2O – contando ainda óxido de ferro, sílica, óxido de titânio e pequenas quantidades de outros compostos. Nos minérios utilizados na produção de alumínio, o teor de Al2 O3 varia de 40 a 60% (CHIAVERINI, 1986).
  • Descoberto em 1825, o alumínio é produzido em quantidades maiores que qualquer outro metal não ferroso utilizado na indústria. Embora seja abundante na crosta terrestre, não é fácil extraí-lo, pois ocorre na forma de compostos (substância formada por dois ou mais elementos químicos). Prateado, o alumínio é resistente e leve, pouco suscetível à corrosão e amplamente reciclável. Dos seus compostos, o óxido (coridon) é o mais duro dos metais depois do diamante (MOHS), o sulfato é utilizado nas indústrias de papel e o cloreto é importante catalisador em química orgânica e na fabricação de óleos lubrificantes.
  • A têmpera, na hora da fabricação, é um fator primordial da qualidade das peças. É de difícil soldagem, quando se consegue soldar, perde 50% de suas propriedades mecânicas, pois destempera. Para superar esse inconveniente surgiram no mercado colas sintéticas especiais, mas que perdem a resistência a temperaturas elevadas e que não têm boa coesão na tração (BAUER, 2005).
  • O alumínio e suas ligas são caracterizados por uma densidade relativamente baixa (2,7 g/cm³, em comparação com uma densidade de 7,9 g/cm³ para o aço), condutividade elétrica e térmica elevadas e uma resistência à corrosão em alguns ambientes comuns, incluindo a atmosfera ambiente. Muitas dessas ligas são conformadas com facilidade em virtude das suas elevadas ductilidades; isso fica evidente em virtude das finas folhas de papel alumínio nas quais o material relativamente puro pode ser laminado. Uma vez que o alumínio possui estrutura cristalina cúbica de face centrada - CFC, sua ductilidade é mantida até mesmo em temperaturas reduzidas. A principal limitação do alumínio está na sua baixa temperatura de fusão (600 ºC), o que restringe a temperatura máxima em que o alumínio pode ser utilizado  (CALLISTER, 2002).
  • Hoje, os Estados Unidos e o Canadá são os maiores produtores mundiais de alumínio. Entretanto, nenhum deles possui jazidas de bauxita em seu território, dependendo exclusivamente da importação. O Brasil tem a terceira maior reserva do minério no mundo, localizada na região amazônica, perdendo apenas para Austrália e Guiné. Além da Amazônia, o alumínio pode ser encontrado no sudeste do Brasil, na região de Poços de Caldas (MG) e Cataguases (MG). A bauxita é o minério mais importante para a produção de alumínio, contendo de 35% a 55% de óxido de alumínio (CHIAVERINI, 1986).

 

25/11/2010

Revista Nature - Notícias sobre a Produção de Grafeno

  • A revista Nature, em sua edição de hoje (25/11/2010) anuncia uma promissora notícia sobre produção comercial de extensas folhas de grafeno - a estrutura de uma única camada atômica de carbono em arranjos hexagonais, que valeu o Prêmio Nobel de Física de 2010 a André Geim e Konstantin Novoselov. 
  • A novidade vem de experimentos realizados pelo grupo de pesquisas liderado por J.M Tour da Rice University – Texas/EUA, em que uma extensa área de grafeno de alta qualidade pode ser produzida com espessura controlável a partir de diferentes fontes de carbono sólido. 
  • Os pesquisadores depositaram as camadas em um substrato catalisador metálico mantido em temperaturas abaixo de 800 °C. Foram produzidas camadas tanto de grafeno puro quanto o grafeno combinado com outros elementos. 
  • O Grafeno é um material promissor pois apresenta propriedades condutoras, mecânicas e estruturais excepcionais. Trata-se de um material bidimensional que é mais resistente que o diamante, e agora é considerado o material mais resistente do mundo. 
  • O Grafeno é uma forma de carbono e altamente condutor, que em breve será usado em computadores e eletrônicos em geral. O material foi descoberto através do uso de uma fita adesiva e um pedaço de grafite, onde conseguiram obter um floco de carbono com a espessura de um único átomo. 
  • Esse material é tão bom quanto o cobre, como condutor de calor, superando qualquer material conhecido. Ele é transparente, mas ao mesmo tempo extremamente denso, onde nem mesmo o hélio, que é o menor dos átomos gasosos, consegue atravessá-lo. A descoberta desse material irá contribuir muito para o desenvolvimento de transistores e telas sensíveis a toque. 
  • Assista ao vídeo que mostra mais informações sobre o grafeno:


09/09/2010

Temperatura Termodinâmica

  • A definição da unidade de temperatura termodinâmica foi dada pela 10ª CGPM (1954 — Resolução 3), que escolheu o ponto tríplice da água como ponto fixo fundamental, atribuindo-lhe a temperatura de 273,16ºK (KELVIN) por definição.
  • A 13ª CGPM (1967 — Resolução 3) adotou o nome kelvin (símbolo K) em lugar de “grau kelvin” (símbolo ºK) e formulou, na sua Resolução 4, a definição da unidade de temperatura termodinâmica, como se segue: “O kelvin, unidade de temperatura termodinâmica, é a fração 1/273,16 da temperatura termodinâmica no ponto tríplice da água.”
  • A 13ª CGPM (1967 — Resolução 3) decidiu também que a unidade kelvin e seu símbolo K fossem utilizados para expressar um intervalo ou uma diferença de temperatura. Além da temperatura termodinâmica (símbolo T) expressa em kelvins, utiliza-se, também, a temperatura Celsius (símbolo t), definida pela equação:
  • t = T - T0
  • A unidade de temperatura Celsius é o grau Celsius, símbolo ºC, igual à unidade kelvin, por definição. Um intervalo ou uma diferença de temperatura pode ser expressa tanto em kelvins quanto em graus Celsius (13ª CGPM, 1967-1968, Resolução 3, mencionada acima). O valor numérico de uma temperatura Celsius t, expressa em graus Celsius, é dada pela relação:
  • t/ºC = T/K - 273,15
  • O kelvin e o grau Celsius são também as unidades da Escala Internacional de Temperatura de 1990 (EIT-90) adotada pelo Comitê Internacional em 1989, em sua Recomendação 5 (CI-1989) (PV, 57, 26 e Metrologia, 1990, 27, 13).
  • Fonte: http://www.inmetro.gov.br/infotec/publicacoes/Si.pdf

21/07/2010

Hubble fotografa planeta-cometa

Usando o Telescópio Espacial Hubble, astrônomos confirmaram a existência de um exoplaneta extremamente quente que poderia ser chamado de "planeta cometário".

O planeta gigante gasoso, chamado HD 209458b, está orbitando sua estrela a uma distância tão pequena que o calor está fazendo sua atmosfera ferver e escapar para o espaço.

Os gases que escapam formam uma espécie de cauda, típica dos cometas - daí o nome de planeta cometário, ou planeta-cometa.

"Desde 2003 os cientistas vêm teorizando que a massa perdida está sendo empurrada para trás, formando uma cauda, e eles até mesmo calcularam a aparência provável [do planeta-cometa]," conta Jeffrey Linsky astrônomo da Universidade do Colorado em Boulder.

"Acreditamos agora ter a melhor evidência observacional para apoiar essa teoria. Nós medimos o gás sendo ejetado do planeta em velocidades específicas, uma parte chegando até a Terra. A interpretação mais provável é que nós medimos a velocidade do material em uma cauda," diz o astrônomo.O planeta, localizado a 153 anos-luz da Terra, pesa um pouco menos do que Júpiter, mas orbita sua estrela a uma distância 100 vezes menor.

O exoplaneta, que está sendo literalmente cozido, gira ao redor de sua estrela em apenas 3,5 dias - para comparação, o planeta mais rápido do nosso Sistema Solar, Mercúrio, orbita o Sol em 88 dias.

Um dos instrumentos do Hubble detectou os elementos pesados carbono e silício na atmosfera superquente do planeta - que atinge quase 1.100 graus Celsius. Isto revela que sua estrela-mãe está aquecendo a atmosfera inteira, permitindo que até mesmo os elementos mais pesados escapem do planeta.

Isto torna o fenômeno radicalmente diferente do que ocorre com os demais planetas, inclusive com os planetas do Sistema Solar, que também "perdem" elementos para o espaço. Recentemente, uma sonda da NASA fotografou a "cauda" do planeta Mercúrio.



A fuga de material do exoplaneta agora estudado, contudo, é muito lenta. Os cientistas estimam que o planeta, que é muito grande, não será totalmente consumido em menos do que um trilhão de anos. Fonte: Site Inovação Tecnológica.

04/05/2010

O que é aço inoxidável ?



  • O aço inoxidável foi descoberto pelo inglês Harry Brearley (1871-1948), que começou a trabalhar como operário numa produtora de aço aos 12 anos de idade. Em 1912, Harry começou a investigar, a pedido dos fabricantes de armas, uma liga metálica que apresentasse uma resistência maior ao desgaste que ocorria no interior dos canos das armas de fogo como resultado do calor liberado pelos gases.


De início a sua pesquisa consistia em investigar uma liga que apresentasse uma maior resistência a corrosão (conhecido como ferrugem). Porém, ao realizar a experiência para revelar a microestrutura desses novos aços com altos teores de cromo que estava a pesquisar, Brearley notou que o ácido nítrico - um reativo comum para os aços - não causava reação alguma.


  • Harry Brearley não obteve uma liga metálica que resistia ao desgaste, a experiência resultou em uma liga metálica resistente a corrosão. A aplicação da descoberta seguiu para a fabricação de talheres, que até então eram fabricados a partir de aço carbono e se corroíam com facilidade devido aos ácidos presentes nos alimentos. 


A resistência a oxidação e corrosão do aço inoxidável deve-se principalmente à presença do cromo, que a partir de um determinado valor e em contato com o oxigênio, permite a formação de uma película finíssima de óxido de cromo sobre a superfície do aço, que é impermeável e insolúvel nos meios corrosivos usuais. Assim podemos definir como aço inoxidável o grupo de ligas ferrosas resistentes a oxidação e corrosão, que contenham no mínimo 12% de cromo.

30/04/2010

Química Tecnológica: Termoquímica


A Termoquímica é a parte da Química que estuda as trocas de calor que acompanham as reações químicas, baseando-se nos estudos da Termodinâmica. As reações químicas podem ser: 

  • Exotérmicas: quando a reação ocorre com liberação de calor (de exo: para fora).
  • Endotérmicas: quando a reação ocorre com absorção de calor (de endo: para dentro). 
Toda substância possui uma quantidade de energia armazenada nas suas ligações. Quando a energia contida nos reagentes é maior que a contida nos produtos, temos uma reação exotérmica, pois ocorre liberação de energia. Quando a energia contida nos reagentes é menor que a contida nos produtos, temos uma reação endotérmica, pois ocorre absorção de energia. 


Essa energia contida nas substâncias recebe o nome de entalpia (H). A variação de entalpia (ΔH) para uma determinada reação química é dada por:

  •  ΔH = HP - HR, onde:
HP é a soma das entalpias dos produtos 
HR é a soma das entalpias dos reagentes. 



  • Quando a reação se realiza a uma pressão constante o ΔH é chamado de calor de reação. Em Termoquímica é usual se expressar as variações de energia nas reações através de quilocalorias (Kcal). A quilocaloria é mil vezes o valor de uma caloria. 
  • Uma caloria corresponde a quantidade de calor necessária para se elevar de 14,5ºC para 15,5ºC a temperatura de 1g de água. Outra unidade usual em Termoquímica é o Joule (J). Uma caloria equivale a 4,18 J.

25/04/2010

Escalas Termométricas

    *Esta postagem foi solicitada por uma leitora do Blog do Professor Carlão através do formulário de contatos. Participe também solicitando temas e postagens através dos comentários ou formulário de contatos. Pergunta: Olá professor por gentileza pode me responder qual a origem de uma escala termometrica? (Andressa Oliveira)
Quando queremos medir a temperatura de um determinado corpo, utilizamos uma escala termométrica, como forma de relacionar o conjunto de números associados às temperaturas. As três escalas termométricas mais comuns são Celsius (ºC), Fahrenheit (ºF) e Kelvin (K). 

O físico sueco Anders Celsius tomou como referência os pontos fixos da ebulição e solidificação da água, atribuindo arbitrariamente o número 0 ao ponto de fusão (PG) e 100 ao de ebulição (PV). 

O físico alemão Daniel Fahrenheit atribuiu dois pontos fixos da mesma forma que Celsius, contudo em misturas diferentes. Fahrenheit fez uma mistura de água, gelo picado e cloreto de amônio e atribuiu à temperatura dessa mistura o valor de 0. À temperatura do sangue humano, atribuiu o valor de 100. Na escala de Fahrenheit, o ponto de fusão é 32 ºF e o ponto de ebulição é 212 ºF. 

As escalas de Celsius e Fahrenheit são consideradas relativas, pois os “zeros” de cada uma dessas escalas deveria corresponder ao estado de mínima agitação, o que não é. Nas temperaturas 0ºC e 0ºF, a agitação das moléculas ainda é muito grande se considerarmos que estas são as temperaturas mínimas nessas escalas. 

Para solucionar isso, Lord Kelvin desenvolveu uma escala absoluta, isto é, uma escala onde o “zero” corresponde ao estado de mínima energia de agitação molecular. A escala Kelvin é expressa através do símbolo K, contudo não se diz “grau kelvin”, nem ºK, apenas “kelvin”. 

Uma interessante característica é a aplicação do termo graus centígrados (referindo-se às cem divisões da escala Celsius), pois quando comparamos com a escala Fahrenheit observamos que a mesma tem 180 divisões de observação da variação da temperatura. Por isso a maneira correta de associar o valor observado da temperatura é referindo-se sempre ao nome do cientista que criou a escala termométrica.





        13/04/2010

        Água na Lua e em Marte

        Depósitos de gelo com pelo menos 2 metros de profundidade podem ser encontrados em algumas pequenas crateras lunares, disseram pesquisadores na segunda-feira, enquanto um segundo estudo sugeriu que recentemente houve degelo e recongelamento da água em Marte, aumentando alguns dos característicos canais da sua superfície.


        Os dois estudos contribuem com o debate político e científico sobre qual seria a melhor forma de estudar o Sistema Solar e o universo - com missões tripuladas, ou com robôs e sondas.


        Num dos estudos divulgados na segunda-feira, Paul Spudis, do Instituto Lunar e Planetário de Houston, e seus colegas analisaram medições feitas pela sonda indiana Chandrayaan, a fim de buscar provas de que havia depósitos de gelo em algumas crateras lunares perenemente à sombra.


        "Conforme a Lua foi bombardeada por objetos com água, como cometas e meteoritos, e implantada pelo hidrogênio do gelo polar ao longo do tempo geológico, parte desse material pode ter ido parar nessas áreas frias e escuras", escreveram os cientistas na revista Geophysical Research Letters.


        Eles mediram a chamada razão de polarização circular, para demonstrar que ou a superfície é excepcionalmente áspera, ou existem de 2 a 3 metros de gelo acumulado.


        O segundo estudo mostrou que um canal de 2 metros de largura em Marte se tornou quase 120 metros mais longo em dois anos.


        Dennis Reiss, do Instituto de Planetologia da Westfalische Wilhelms-Universitat, em Munster, na Alemanha, e seus colegas disseram que a melhor explicação para isso é o degelo de uma pequena quantidade de água em forma de gelo.


        Fotos mostram manchas marrons na vala, bem como canais novos e menores, disseram eles na mesma revista. A superfície, segundo eles, talvez fique quente a ponto de que a água dessa região de Marte derreta.


        Em setembro, várias equipes haviam noticiado evidências de água, provavelmente congelada, em superfícies desérticas da Lua e de Marte, e pesquisadores também já viram nevar em Marte.


        Fonte: Reuters.

        31/03/2010

        O maior experimento da História

        • Cientistas anunciaram ter conseguido pela primeira vez, a colisão de feixes de prótons no acelerador gigante de partículas LHC. “Muitas pessoas esperaram muito tempo por este momento, mas sua paciência e dedicação está começando a render dividendos", comemorou Rolf Heuer, diretor-geral da Organização Europeia para Pesquisa Nuclear (Cern, na sigla em francês, a instituição responsável pelo LHC).
        • O maior experimento científico do mundo consiste em colidir partículas no nível mais alto de energia já tentado, recriando as condições presentes no momento do Big Bang, que teria marcado o nascimento do universo, 13,7 bilhões de anos atrás.
        • O Grande Colisor de Hádrons (LHC), situado em um túnel subterrâneo circular de 27 quilômetros de extensão sob a fronteiro franco-suíça, começou a circular partículas em novembro passado, depois de ser fechado em setembro de 2008 por causa de superaquecimento.
        • A experiência teve sucesso depois de duas tentativas frustradas durante a madrugada. De acordo com os pesquisadores, ela abre portas para uma nova fase da física moderna, ajudando a responder muitas perguntas sobre a origem do universo e da matéria.

        04/01/2010

        Aniversário de Isaac Newton

        Isaac Newton nasceu em Londres, em 4 de janeiro de 1643, e viveu até o ano de 1727. Cientista, químico, físico, mecânico e matemático, trabalhou junto com Leibniz na elaboração do cálculo infinitesimal. Durante sua trajetória, ele descobriu várias leis da física, entre elas, a lei da gravidade.


        Foi um dos principais precursores do Iluminismo, criou o binômio de Newton, e, fez ainda, outras descobertas importantes para a ciência. Quatro de suas principais descobertas foram realizadas em sua casa, isto ocorreu no ano de 1665, período em que a Universidade de Cambridge foi obrigada a fechar suas portas por causa da peste que se alastrava por toda a Europa. Na fazenda onde morava, o jovem e brilhante estudante realizou descobertas que mudaram o rumo da ciência: o teorema binomial, o cálculo, a lei da gravitação e a natureza das cores.

        Newton sempre esteve envolvido com questões filosóficas, religiosas e teológicas e também com a alquimia e suas obras mostravam claramente seu conhecimento a respeito destes assuntos. Devido a sua modéstia, não foi fácil convencê-lo a escrever o livro Principia, considerado uma das obras científicas mais importantes do mundo.

        Newton tinha um temperamento tranquilo e era uma pessoa bastante modesta. Ele se dedicava muito ao seu trabalho e muitas vezes deixava até de se alimentar e também de dormir por causa disso. Além de todas as descobertas que ele fez, acredita-se que ocorreram muitas outras que não foram anotadas.


        26/09/2009

        FONTES DE ENERGIA

        • Energia hidráulica – é a mais utilizada no Brasil em função da grande quantidade de rios em nosso país. A água possui um potencial energético e quando represada ele aumenta. Numa usina hidrelétrica existem turbinas que, na queda d`água, fazem funcionar um gerador elétrico, produzindo energia. Embora a implantação de uma usina provoque impactos ambientais, na fase de construção da represa, esta é uma fonte considerada limpa.
        • Energia fóssil – formada a milhões de anos a partir do acúmulo de materiais orgânicos no subsolo. A geração de energia a partir destas fontes costuma provocar poluição, e esta, contribui com o aumento do efeito estufa e aquecimento global. Isto ocorre principalmente nos casos dos derivados de petróleo (diesel e gasolina) e do carvão mineral. Já no caso do gás natural, o nível de poluentes é bem menor.
        • Energia solar – ainda pouco explorada no mundo, em função do custo elevado de implantação, é uma fonte limpa, ou seja, não gera poluição nem impactos ambientais. A radiação solar é captada e transformada para gerar calor ou eletricidade.
        • Energia de biomassa – é a energia gerada a partir da decomposição, em curto prazo, de materiais orgânicos (esterco, restos de alimentos, resíduos agrícolas). O gás metano produzido é usado para gerar energia.
        • Energia eólica – gerada a partir do vento. Grandes hélices são instaladas em áreas abertas, sendo que, os movimentos delas geram energia elétrica. È uma fonte limpa e inesgotável, porém, ainda pouco utilizada.
        • Energia nuclear – o urânio é um elemento químico que possui muita energia. Quando o núcleo é desintegrado, uma enorme quantidade de energia é liberada. As usinas nucleares aproveitam esta energia para gerar eletricidade. Embora não produza poluentes, a quantidade de lixo nuclear é um ponto negativo.Os acidentes em usinas nucleares, embora raros, representam um grande perigo.
        • Energia geotérmica – nas camadas profundas da crosta terrestre existe um alto nível de calor. Em algumas regiões, a temperatura pode superar 5.000°C. As usinas podem utilizar este calor para acionar turbinas elétricas e gerar energia. Ainda é pouco utilizada.
        • Energia gravitacional – gerada a partir do movimento das águas oceânicas nas marés. Possui um custo elevado de implantação e, por isso, é pouco utilizada. Especialistas em energia afirmam que, no futuro, esta, será uma das principais fontes de energia do planeta.

        16/09/2009

        ÁRVORE ARTIFICIAL CONTRA O EFEITO ESTUFA

        Um grupo de cientistas da Universidade de Colúmbia, nos Estados Unidos, anunciou ter criado árvores artificiais que podem ajudar no combate ao aquecimento global, capazes de absorver CO2 da atmosfera quase mil vezes mais rapidamente do que árvores de verdade. A estrutura tem galhos semelhantes aos de pinheiros, mas não precisa de sol nem água para funcionar. O segredo está nas folhas, feitas de um material plástico capaz de absorver dióxido de carbono, um dos principais gases responsáveis pelo efeito estufa. "Da mesma forma que o faz uma árvore natural, a medida que o ar flui pelas folhas, estas folhas absorvem o CO2 e o mantêm preso", explicou o cientista Klaus Lackner, geofísico do Centro de Engenharia da Terra da Universidade de Colúmbia, em Nova Iorque. No entanto, enquanto árvores e outras plantas armazenam o gás em seus tecidos, a árvore artificial guarda o CO2 em um filtro, que comprime o gás e o transforma em líquido. Desta forma, o CO2 poderia ser enterrado e armazenado permanentemente debaixo da terra. Fonte: Inovação Tecnológica.

        26/08/2009

        RECORDE DE VELOCIDADE EM CARRO A VAPOR

        Uma equipe britânica quebrou nesta terça-feira, na Califórnia, o recorde mundial de velocidade em carro a vapor, ao atingir 225,055 km/h, anunciaram os organizadores do evento. O recorde anterior remontava a 1906, quando o americano Fred Marriott chegou aos 204,387 km/h em Daytona Beach (Flórida). A marca, obtida na base áerea Edward's, 60 km ao norte de Los Angeles, foi a média de duas corridas, com velocidades máximas de 218,871 km/h e 243,148 km/h. Charles Burnett III, que liderou a façanha, definiu: - Foi absolutamente fantástico, o carro respondeu maravilhosamente. O veículo britânico, cujo recorde deverá ser confirmado pela Federação Internacional de Automobilismo (FIA), mais parece um catamarã que um carro de corrida. Construído com fibra de carbono e alumínio, o veículo pesa três toneladas, mede 7,6 metros e tem uma dúzia de caldeiras. Das agências de notícias Los Angeles, EUA.

        12/08/2009

        O GERADOR ELÉTRICO - AULA 1

        Nesta teleaula você vai ver que a produção de energia elétrica se baseia na alteração de um campo magnético nas proximidades de uma bobina.

        As Dez Mais Lidas...

        Leia também...

        AV2 - Algoritmos e Lógica de Programação [RESOLVIDA]

        1) Enquanto um vetor é uma estrutura de dados homogênea unidimensional, pelo motivo de crescer os dados de estrutura apenas em uma direção, ...